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ABSTRACT 

 

SIMULATION OF THE CASIMIR EFFECT FOR VARIOUS 

GEOMETRIES 

 

Taşcı, Emre 

M.S., Department of Physics 

Supervisor: Prof. Dr. Şakir Erkoç 

 

July 2002, 54 pages 

 

 

This thesis aims to propose an algorithm in order to calculate the Casimir 

effect and after, by means of this algorithm, to expand the applications of the 

effect for various geometries that are difficult to construct in experimental 

conditions. Theoretical, as well as experimental results have been given and 

revised in order to check the reliability of the algorithm in question. 

 

Keywords: Casimir Effect, Vacuum Energy, Atomic Interaction Simulation 
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ÖZ 

 

CASIMIR ETKİSİNİN FARKLI GEOMETRİLERDE 

SİMÜLASYONU 

 

Taşcı, Emre 

Yüksek Lisans, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. Şakir Erkoç 

 

Temmuz 2002, 54 sayfa 

 

Bu tez, Casimir etkisinin hesaplanmasını sağlayacak bir algoritma 

kurulumunu ve sonrasında, bu algoritma vasıtasıyla etkinin uygulama 

alanlarını genişletip, laboratuvar koşullarında hazırlanması zor olan çeşitli 

geometrilerde bu etkiyi  incelemeyi amaçlamaktadır. İlgili algoritmanın 

güvenilirliğini kontrol maksadı ile, hem deneysel, hem de teorik sonuçlar da 

verilmiş ve gözden geçirilmiştir. 

 

Anahtar Kelimeler: Casimir Etkisi, Vakum Enerjisi, Atomsal Etkileşim 

Simülasyonu
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PREFACE 

 

 

 “In recent years the method of “computer simulation” has started 

something like a revolution of science: the old division of physics (as well as 

chemistry, biology, etc.) into “experimental” and “theoretical” branches is no 

longer really complete. Rather, “computer simulation” has become a third 

branch complementary to the first two traditional approaches. 

 

 What, then, is the specific significance of computer simulation or 

“computer experiments”? The answer is simply that computer simulation 

yields exact information (apart from statistical errors, but these can be made as 

small as desired, at least in principle) on model systems which are precisely 

characterized. (For problems in statistical physics this means that parameters 

describing the Hamiltonian are known explicitly and exhaustively.) 

 

 In contrast, the information provided by analytic theory is exact only in 

rather rare cases, while in most other cases uncontrolled approximations are 

required. For example, statistical physics problems which are solvable for a 

three-dimensional geometry are idealized limiting cases such as ideal gases or 



 
vii 

ideal solutions, coupled harmonic oscillators, etc. The statistical mechanics of 

even very simple models, such as the three-dimensional Ising model, cannot 

be solved exactly, and much less is known about models with realistic 

potentials between the atomic degrees of freedom. Thus computer simulations 

are often designed to check the accuracy of some approximation made in the 

analytical treatment of a model. 

 

 Similarly, the information provided by experiment is almost never 

precisely characterized in the sense that the effective Hamiltonian of a given 

experimental sample is precisely known. Sometimes it is even controversial 

whether some experimentally observed phenomenon is “intrinsic” or due to 

some unknown impurity effects – remember that the chemical constitution of 

an experimental sample is known only approximately anyway. These are just a 

few examples from which it is clear that the comparison between analytic 

theory and experiment does not always lead to conclusive answers, and 

simulations are needed to bridge this gap. Thus, a direct comparison between a 

simulation of a model and experiment is not hampered by inaccurate 

approximations, as are often inevitable in analytic theory, and hence may 

indicate more conclusively whether the model faithfully represents the real 

system or not.” 

K. Binder and D.W. Heermann[1] 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Starting from Casimir's 1948 dated article[2], the “Casimir-Polder”[3] 

reactions have been examined in various fields, some of which, aside from the 

quantum field theory, are cosmology and particle physics. Originally Casimir 

proposed the so called theory for the explanation of attraction between two 

parallel conducting plates. When two parallel conducting plates of unit area 

are placed in a vacuum at a distance from one another, they should be attracted 

by a force, which does not depend on mass, charge and any other coupling 

constants. The nature of this force may be considered as long-range, because 

of its dependency on the retardation [2]. Meanwhile, direct applications of 

these interactions are developed and the consequences of the effect have been 

verified through experiments including different types of conductors, as well 
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as semi-conductors and dielectrics. Since, unlike other interactions, the 

interaction energy and the sign of the arousing force in the Casimir effect 

depend vastly on the geometry of the system, our main interest in this work 

will be to investigate and gather some quantitative results for various 

geometries using simulation techniques, some of which, by practical means 

are very difficult to conduct using actual methods (mainly the atomic force 

microscopy) because of the closeness of the systems in question. Beginning 

with the basic geometries for which we have theoretical and experimental 

results, we will be able to confirm the appropriateness of our calculations and 

then, using these approved results, will continue to investigate the properties 

of more complex geometries such as concentric spherical shells, a spherical 

shell inside a cubic shell or a spherical shell confined within a pyramid. 

 

In the second chapter, various methods that lead to the original Casimir 

results are explained. Using different approaches confirms the fact that, 

although the Casimir effect was firstly derived as a result of quantum 

electrodynamical phenomenon, it is not limited to this topic, as some relatively 

simple interactions also lead to the same result. By means of this identity, we 

will be able to calculate the effect using the summation of one-to-one atomic 

interactions. Milonni et al.’s book[4] and article[5], together with 

Mostepanenko et al.’s book[6] and article[7] and Elizalde and Romeo’s 

article[8] were the main references for the derivations in this chapter. The 
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point splitting method, being one of the mostly used techniques for 

determining the Casimir energy was purposely omitted because of the 

complexity of the procedures involved when dealing with a relatively simple 

system: the process of calculating the Green functions required for each 

geometry and the space it is confined in would be overwhelming. Interested 

reader can find applications of this method in the works of Fulling[9], Birrell 

and Davies[10], and Bayın and Özcan[11]. 

 

In the third chapter, a brief review of some of the major experiments 

conducted so far is given with their results and their degrees of agreement with 

the theory.  

 

Fourth chapter includes the algorithms and the results of our 

simulations, with graphical snap-shots. 

 

Results and some possible after-developments are discussed in the last 

chapter where a synthesis of the three branches concerning the theory (the 

theory itself, the experiments and the simulations) is tried to be accomplished. 

 

The proof of the analogy used in chapter 2 is included in the appendix 

section. 
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CHAPTER 2 

 

 

THEORETICAL FOUNDATIONS OF THE CASIMIR 

EFFECT 

 

 

 

2.1 Introduction 

 

 As a result of the vast application possibilities of the Casimir effect, 

various disciplines have been investigated and derived the effect using 

different techniques [4,6]. We have chosen derivations of the Casimir effect 

from the quantized electromagnetic field using electric and magnetic field 

operators, then with an another solution to the infinite summation by 

utilization of the Riemann - Zeta function and from a very different point of 

view, by calculating the momentum transferred from the virtual photons 

exerting pressure to the boundaries. Since each discipline has its own notation 

for various quantities, we tried to preserve these different notations as well.  
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2.2 The Casimir Effect derived from the Electromagnetic Interactions in 

the Vacuum State 

 

 In order to work with the appropriate operators, we must first define 

and quantize our field. This will allow us to acknowledge the vacuum state as 

the state where a defined annihilation operator has zero eigenvalue. Thus, we 

will first construct the field and define the necessary operators, and then will 

find the eigenvalues of the energy of the specific geometry defined by the 

boundary conditions in this field. 

 

For a field with no boundaries, the number of allowed modes is infinite 

since there is no restriction on boundary conditions. With A r  being the 

electromagnetic vector potential, from isotropy we conclude that 2
A r should 

be independent of r  for each mode of the field. The Helmholtz equation 

 2 2
0 0 0,k k

c
A r A r  (1) 

is satisfied by: 

 0 , 0ie e k r
k kA r k e  (2) 

so that 
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 , 0tA r  (3) 

which comes from the Coulomb Gauge. 

If the space is divided into cubes of volume 3V L  and with the 

periodic boundary condition we have 

 , , , , , ,x L y L z L t x y z tA A  (4) 

meaning 

 2, , , , ; .x y z x y z ik k k n n n n
L
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Further investigation of the vector potential yields[4]: 

 
1
22

†2, i i

k

ct a t e a t e
V

k r k r
k k k kA r e  (10) 

so 

 
1
22

†2, 0 .k ki t i t

k

ct a e a t e
V

k r k r
k k k kA r e  (11) 

From this point, the linearity of Maxwell’s equations permits us to write the 

vector potential of the field as the sum of all possible modes: 

 
1
22

†2, .i i

k

ct a t e a t e
V

k r k r
k k k

k
A r e  (12) 

From this vector potential, we derive the following electric and magnetic field 

operators[4]: 

 
1
2

†2, ,i ikt i a t e a t e
V

k r k r
k k k

k
E r e  (13) 

 
1
222, . i i

k

ct i a t e a t e
V

k r k r
k k k

k
B r k e  (14) 

 

Now that we have the electromagnetic operators A, E and B, we can 

continue to construct the mode functions satisfying the boundary conditions 

and the quantization and normalization constraints valid through the geometry 

formed in the field. 

 



 

8 

 For a setting of two semi-infinite parallel conducting plates placed at 

0z  and z d  respectively, with dimensions x yL L L  and zL , the 

tangential component of the electric field must vanish on the plates. So, the 

normalized mode functions will be 

 x y zA A AA r r i r j r k  (15) 

where 

 
1
28 cos sin sinx x x y zA a k x k y k z

V
r  (16) 

 
1
28 sin cos siny y x y zA a k x k y k z

V
r  (17) 

 
1
28 sin sin cosz z x y zA a k x k y k z

V
r  (18) 

with 

 

2 2 2 2
,1,

, , ; , , .

x y z z

x y z
z

a a a V L L
l m nk k k l m n
L L L

 (19) 

Since 0 :A  

 0.x x y y z z x y z
z

k A k A k A lA mA nA
L L

 (20) 

The allowed frequencies for these modes will simply be: 

 
1
22 2 2

2 2 2 .lmn lmn
z

l m nk c c
L L L

 (21) 
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Thus, with an analogy to the harmonic oscillator [see Appendix A], the zero 

point energy of the vacuum inside the cavity will be: 

 
1
22 2 2' '

2 2 2

12 c
2 lmn

lmn lmn z

l m n
L L L

 (22) 

 

 The prime sign over the summation symbol indicate that a factor 1
2

 

should be inserted if one of the integers , ,l m n  is zero – that is when we have 

only one polarization, in the other cases, the 2 factor arises from the two 

independent polarizations of modes with , , 0l m n . 

 

 If zL L d , then we can replace the summations over l  and m  with 

integrals with respect to d xk  and d yk : 

 

1
2

1
2

2 '
2 2 2

2
0 0

2 2 2'
2 2

2 2
0 0

d d

d d

x y x y z
n

x y x y
n

LE d c k k k k k

L nE d c k k k k
d

 (23) 

which, is an infinite quantity. The zero-point energy of the vacuum is infinite 

even in a finite volume. 

 

 If the plates were taken apart from each other to an infinite, the sum 

over n  in (23) could also be counted as an integral. This time: 
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1
2

2
2 2 2

2
0 0 0

d d d .x y z x y z
L dE c k k k k k k  (24) 

 

 These two energy functions are obviously infinite but, if we are to 

calculate the potential energy which is, by definition, the amount of energy 

required to construct the system – in other words, the energy that would take 

to move one of the plates from infinity to a vicinity of d  with respect to the 

other one, we can calculate a finite value. This is done as follows: 

 U d E d E  (25) 

 

1
2

1
2

2 2 2'
2 2

2 2
0 0

2 2 2

0 0 0

d d

d d d .

x y x y
n

x y z x y z

L c nU d k k k k
d

d k k k k k k

 (26) 

 

 If we refer to polar coordinates ,u  in the ,x yk k  plane d d d dx yk k u u  

 
1
2 1

2
2 2 2'

2 2 2
2 2

0 0 0

d d d .
2 z z

n

L c n dU d u u u k u u u k
d

 (27) 

 

 At this point, it is suitable to introduce a cut off function in the form of 

 
1
22 2

zf k f u k  (28) 

such that 



 

11 

 
1;

.
0;

m

m

k k
f k

k k
 (29) 

We  might suppose 
0

1
mk

a
, where 0a  is the actual Bohr radius, because of the 

penetration of the wavelengths compared small with atomic dimensions. Now, 

equation (27) becomes 

 

1
2 1

2

1 1
2 2

1 1
2 2

1 1
2 2

2 2 2'
2 2 2

2 2
0

2 2 2 2

0 0

2 3 '
2 2

3
0

2 2

0 0

d
2

d d

d
4

d d .

z
n

z z z

n

L c nU d u u u f u k
d

d k u u u k f u k

L c x x n f x n
d d

d x x f x
d

 (30) 

where 
2 2

2

u dx  and .zk d  

Defining 

 
1 1
2 22 2

0

dF x x f x
d

 (31) 

U d  becomes 

 
2

2
3

1 0

1 0 d .
4 2 n

cU d L F F n F
d

 (32) 

According to the Euler-MacLaurin summation formula[12] 

 
1 0

1 1 1d 0 0 0 ...
2 12 720n

F n F F F F  (33) 
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for 0.F  Using  

 2

2

d ,

2

F u u f u
d

F f
d

 (34) 

we have 0 0, 0 4F F  and all the higher derivatives 0nF  vanish if 

we assume that all the derivatives of the cut off function vanish at 0. Thus  

 
1 0

1 4d 0
2 720n

F n F F  (35) 

which makes 

 
2 2

2 2
3 3

4 .
4 720 720

c cU d L L
d d

 (36) 

 

Taking the derivative of this potential with respect to d , we acquire the 

attractive force per unit area between the plates: 

 
2

4240
cF d

d
 (37) 

which is just the result that Casimir had found in his original paper[2]. 

 

2.3 The Casimir Effect derived using the Zeta-Function 

 

The application of the zeta-function regularization for calculating the 

Casimir effect in a perfectly conducting parallel-plate configuration can be 
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done as follows[8] (a more general application of this method concerning 

spheres and circles can be found in [13]): 

 

The electromagnetic field in a three-dimensional space can be described 

as a composition of two scalar massless fields, one satisfying the Dirichlet 

boundary conditions and the other one satisfying the Neumann Boundary 

conditions. These fields correspond to the transverse electric and the 

transverse magnetic modes, and the conditions of the perfect conduction 

requires that 0n B  and n E 0 on the surface of the conductor, where 

n is the unit normal vector for the surface of the conductor. For these two 

modes, the eigenmodes have to satisfy the free Klein-Gordon equation 

 , 0.tx  (38) 

The Dirichlet boundary conditions demand the field to (38) vanish on the 

boundaries: 

 , 0.D tx  (39) 

If we assume the positions of the parallel-plates to be orthogonal to the x  axis 

and separated by a distance L  from each other, then, after renaming , ,x y z  

into ,x Tx , the solutions may be expressed as 

 1
2 2

2

, , sin

, 1,2, 3....

D
T T kni i L t

D
Tkn

nxx t e e
L

nL n
L

k x
Tx

k
 (40) 
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And, for the eigenvalues obeying Neumann boundary conditions we have the 

constraint that 

 , 0N
n tx  (41) 

on the boundaries, n being the normal vector to the surface. Hence we get the 

eigenvalues obeying the Neumann boundary conditions as 

 1
2 2

2

, , cos

, 0,1,2,3....

N
T T kni i L t

N
Tkn

nxx t e e
L

nL n
L

k x
Tx

k
 (42) 

Now we can write the field as a summation of these two sets of eigenvalues: 

 
1
2

1
2

1
2

2 2

2 20
1 0

2 2
2

2
1 0

2 2 2
2 2

2 2
1

d d1 1 1
2 2 2

d1
2 2

d d1 1 .
2 2 2

D NT T
kn kn

n n

T
T

n n

T T
T T

n

L L L
L L

n
L L

n
L L L

k k

k
k

k k
k k

 (43) 

To utilize the zeta-function, we replace the power 1
2

 by 2s , where s is a 

complex variable: 

 

1 2
0 0

22 2 2
22 2

2 20
1

d d1 1,
2 2 2

s
sT T

T T
n

ns L
L L L

k k
k k  (44) 

We will focus on 2
0  (the reason for this is the cancellation of the 1

0 , as 

explained below). After assuming Res to be large enough – one has to do this 

ansatz to make the integral result converging - we have [8] 
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1

2 /22 2
30

1

2 /2
, .

4 /2

s
s

s
n

s
s L n

L s
 (45) 

From the assumption that s  was sufficiently large, the summation in (45) is 

actually the Riemann zeta function [12,13] 

 
1

, Re 1.z

n

z n z  (46) 

In this case,  2
0  would happen to be 

 3
2

2 2
0 01

3
24

lim ,

3 .
8

s
L s L

L

 (47) 

Since Re 3 1, 3  can not be found from (46), but there are alternate 

methods to do this. On of these methods is the exploitation of the zeta function 

being multiplied by the gamma function, that is: 

 1 2/2 1 /2 1zz z z z  (48) 

so (47) reads: 

 

2
2 40

2

4

1 4
8

.
720

L
L

L

 (49) 

As for 1
0 , since we are looking for the difference of the energies at L  and as 

L , the kn  independent 1
0  term will yield the same results and hence, 

will cancel itself in the subtraction.  2
0 L  will vanish for L  because its 

dependency to L  being 4
1
L . So, at the end of the subtraction, we finally get 
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2

40 .
720

L
L

 (50) 

Let E L  be the energy stored in the volume and F L  the Casimir force per 

area. Then (with the force being also in natural units, namely 1, 1c ) 

 
2

4 .
240

E L

F L L L
L L

 (51) 

And thus, we have once more derived the original result that Casimir had 

found in his paper[2]. 

 

 

2.4 The Casimir Effect derived from the Momentum Transfer 

 

 In this approach, we focus ourselves on the linear momenta transferred 

by the virtual photons[4]. Each photon carries a momentum of 1
2 k , and while 

the reflections outside the plates tend to push the plates together, the 

reflections inside the plates act to push the plates apart. Since, because of the 

frequency restrictions, the allowed fields outside of the plates are more than 

the ones inside, the net result of these reflections will be to push the plates 

together.  

 

 The pressure exerted by a plane wave with an angle of coincidence is  

 22 cosFP u
A

 (52) 
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where u is the energy per unit volume of the incident field. Within the plates, a 

mode of frequency  contributes a pressure 

 
2

1 2
2

1 12 cos
2 2 2

zkP V
V k

 (53) 

where k
c

 and V is the quantization volume. The factor 1
2

 is needed in 

order to take the equally divided zero-point energies of the modes between the 

waves propagating towards or away from each of the plates into account[5]. 

For large plates, xk and yk  take a continuum of values while zk  is discreet with 

z
nk
d

 n  . Adding the contributions from all modes of the space 

between the plates, we have the total outward pressure 

 
2

1/22 22 21 0 0

/

/
x yout

n
x x

n dcP dk dk
d k k n d

 (54) 

on each plate. 

 

 For the modes out of the plates, we simply let zk  to be continuous, 

therefore replacing 
n

with 
0

z
d dk : 

 
2

1/23 2 2 2
0 0 0

.z
x y zin

x x x

c kP dk dk dk
k k k

 (55) 
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Both inP  and outP  are infinite but, once more, we are interested in their 

difference. After some algebra (a similar approach is taken for (26)), we can 

write this difference as[4]: 

 
2

2
1/2 1/24 2 2

1 0 0 04out in
n

c dx dxP P duu
d x n x u

 (56) 

and using the Euler-MacLaurin summation formula (33), we derive the force 

per unit area as  

 
2

4240out in

cP P
d

 (57) 

just as the results found in the previous sections. 
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CHAPTER 3 

 

 

THE EXPERIMENTAL VERIFICATIONS OF THE 

CASIMIR EFFECT 

 

 

 

3.1 History 

 

 The Casimir force between two parallel metal plates was first measured 

by the experiment Spaarnay conducted in 1958[14]. Earlier and some of the 

experiments conducted after, used dielectrics as the media because of the 

interferometric methods allowed in order to determine the separation of the 

bodies. These experiments include the ones conducted by Derjaguin and 

Abrikosova[15], Derjaguin[16], Tabor and Winterton[17], Sabisky and 

Anderson[18]. Most of these experiments were able to confirm the predictions 

of the theory that, a critical change in the magnitude would happen for some 

critical separation but, they lacked the quantitative results because of the high 
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percentage error they included arising from the difficulty of keeping the two 

bodies parallel for such small separations and the actual smallness of the force. 

Although an abstract review of these major pioneering experiments will be 

given in section 3.3, two of the experiments conducted have importance for 

being the first in different aspects. 

 

 Abrikosova and Derjaguin used different configurations for the first 

time: a hemisphere over a flat surface of polished quartz, two flat plates of 

quartz, and one plate of quartz over a metal plate. The separation between 

them was measured by means of optical interferometry. They studied the force 

for the separations ranging from 0.1 m to 0.4 m.  Spaarnay’s experiment was 

the first one to include conducting surfaces. The force between cleaned metal 

plates (chromium and aluminum) inside an evacuated chamber filled with 

nitrogen gas was measured by the restoring force on a spring to keep the 

system in balance. A great care was taken to keep the dust particles away, 

since they gave rise to repulsive forces. For separations between 0.5 m and 

2 m , forces between 0.2 dyne/cm2 and 0.003 dyne/cm2 were measured.  
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3.2 The Method 

 

 In most of the experiments, a spring, whose elastic modulus was known 

precisely, and a capacitor attached to the bodies were used in order to measure 

the restoring force and the separation distance accordingly.  

 

 As the two bodies attracted each other, the spring would resist the 

attraction and from a simple calculation, the force needed to restore the 

balance would be found. Also, the movement of one body with respect to 

other would change the separation distance between the plate of the capacitor 

attached to the moving body and the other plate attached to the stationary body 

resulting in the changing capacitance which can also be measured very 

precisely. 

 

 But, in Mohideen and Roy’s experiment, a very modern method was 

used: they benefited from the accurate atomic force microscope (AFM) to 

measure the force between the two bodies. In their setup, a laser beam is 

reflected from the cantilever of the AFM holding up the sphere, and is 

received by a set of photodiodes. A force on the sphere would cause a 

deflection of the laser off the cantilever and there would be a signal difference 

among the photodiodes. By this means, they were able to collect data for 

separation differences ranging between 100 nm to 900 nm and so far, their 
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results are the most accurate results obtained, in excellent agreement with the 

theory. 

 

 

3.3 The Experiments 

 

3.3.1 Tabor and Winterton’s Experiment (1968) [17] 

 

 Tabor and Winterton used extremely smooth mica cylinders having 

separations in units of Å. They measured the force between the sheets with 

their separations ranging from 50Å to 300Å. Their representation of the mica 

cylinders along with the results of their experiment taken from their original 

article are given in figure 1 and figure 2, respectively. The power change in 

the force resulting from the transition from the van der Waals interaction to 

the Casimir interaction can be clearly seen. 

 

Figure 1: Tabor and Winterton's mica cylinders 
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3.3.2 Sabisky and Anderson’s Experiment (1973) [18] 

 

Helium films were utilized in this experiment where measurements for  

separations between 10Å and 250Å were achieved in very low temperature 

(1.38 °K ). They did not refer to Casimir’s article, since their work consisted 

dielectrics, not conductors but, since their results were in excellent agreement 

with Lifshitz’s theory[19] which also covered the same topic, their experiment 

was welcomed in favor of the Casimir effect. Although Lifshitz’s theory’s 

dealing with temperature was later corrected by the works of Mehra[20] and 

Brown and Maclay[21], this correction has negligible effect on Sabisky and 

Figure 2: Tabor and Winterton's results 



 

24 

Anderson’s experiment because of the low temperature involved. The scheme 

of their experiment is presented in figure 3 with their results for various 

measurements and calculations of the energy for different compounds in figure 

4. 

 

 

 

Figure 3: Sabisky and Anderson's vacuum can 
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3.3.3 Sukenik et al.’s Experiment (1993) [22] 

 

 Contrary to the experiments done before, Sukenik measured the effect 

between a plate and atom. By means of passing sodium atoms in a gold cavity, 

he observed the deflection of the atoms from their usual route using the 

density (opacity in his case of sodium atoms) with respect to the change in the 

cavity width. His arrangement is given in figure 5. The results, as shown in 

figure 6, are in excellent agreement with Casimir’s formulation. The labels in 

figure 6 are as follows: (a) Theoretical QED interaction, (b) theoretical van der 

Waals interaction, (c) no interaction at all. 

 

Figure 4: Sabisky and Anderson’s results 
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3.3.4 Lamoreaux’s Experiment (1997) [23] 

 

 Along with Mohideen and Roy’s experiment, Lamoreax’s experiment is 

one of the most benefited experiment in theoretical studies. He measured the 

force originating from the Casimir effect for a system consisting of a 4 cm 

diameter sphere over a quartz plane with 0.5 cm thickness. He ran the 

Figure 5: Sukenik et al.’s arrangement 

Figure 6: Sukenik et al.’s results 
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experiment for a separation range of 5000Å to 100000Å. His experimental 

arrangement along with his results are given in figure 7 and in figure 8, 

respectively. 

 

Upper result graph shows data points against theoretical Casimir force with 

electric force subtracted and averaged, while lower graph shows theoretical 

Casimir force subtracted from the upper plot. 

 

 

 

 

Figure 7: Lamoreaux’s arrangement 
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3.3.5 Mohideen and Roy’s Experiment (1998) [24] 

  

As mentioned above, Mohideen and Roy’s experiment is also, one of 

the basic experiments used for the verification of recent theories on the 

subject. This experiment has definite superiority over the ones preceding, 

including Lamoreaux’s experiment. A totally new technology in measuring 

has been introduced in this experiment, that is, the utilization of the atomic 

force microscope (AFM) which enabled high accuracy in the measuring of the 

force for the smallest systems in question. They measured the force between a 

metallized (coated with 300 nm Al), 200 4 m  diameter sphere levitated 

above a sapphire disc. By means of the AFM, they were able to measure the 

Figure 8: Lamoreaux’s results 
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force for separations between 100 nm to 900 nm. The schematic arrangement 

of their experiment is given in figure 9, while an scanning tunneling 

microscope image is included in figure 10 with the results of their experiments 

being in figure 11. 

 

 

Figure 9: Mohideen and Roy’s arrangement 

Figure 10: Mohideen and Roy’s 
arrangment’s STM image 
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Figure 11: Mohideen and Roy’s results 
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CHAPTER 4 

 

 

THE SIMULATIONS OF THE CASIMIR EFFECT 

 

 

 

4.1 Introduction 

 

In our simulation, we have calculated the overall energy stored in the 

systems via adding up and renormalizing the interatomic interaction energies. 

We will assume that the effect is additive and will show that, the total error for 

this assumption can not exceed 19.3% even for non-trivial geometries (reasons 

for the exactness of this factor will be explained below). The refining and 

renormalization processes are also explained. In our calculations, the 

FORTRAN-77 and PHP/C++ languages are used for compiling and running 

the code. The original code is developed by Şakir Erkoç[25] and it is modified 

for the Casimir theory. The results are then visualized through the 3-D 
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graphical engine controlled by Mathsoft Mathcad and finally, the graphs are 

plotted through the utilization of Microsoft Excel.  

 

 

4.2 The Results of the “Additivity Assumption” 

 

 Casimir had found his results for two flat, parallel surfaces because of 

the simplicity of that arrangement offered for the calculations. In the 

experiments, as a result of the difficulty of aligning two flat surfaces parallel, a 

sphere over a plane is used most generally due to its symmetry and the ability 

to measure the difference between the two surfaces via the Newton rings 

formed on the plane. Since, the two parallel plate formation is the simplest 

geometry, a modification is needed when we are to investigate the effect in 

other geometries.  

 

 For such demands, Derjaguin developed a method[15] that relates the 

force between a sphere and a plane to the theoretically simpler two parallel flat 

planes, also known as the proximity force theorem[26]. The force between two 

spheres is given by[15] 

 1 2

1 2

2 ,
RR

F d u d
R R

 (58) 
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where u d  is the interaction energy per unit area between two flat surfaces 

separated by d , 1R  and 2R  being the radii of the spheres. For a sphere over a 

plane, we set the radius of one sphere to infinity and find 

 2 .F d Ru d  (59) 

 

The theoretical Casimir potential for two perfectly conducting spheres 

is[27,28]  

 
3 3
1 2

7

143
16S

R R
d

d
 (60) 

where d is the distance between the spheres and kR being the spheres' radii. 

 

 In our simulation, we derived the resultant energy from the atom-atom 

interactions. The formula for the Casimir potential between two atoms, with 

static electric and magnetic polarizabilities 0
kE

, 0
kM

 and separated by a 

distance r  is given by[2]: 

 7

CU r
r

 (61) 

where 

 
1 2 1 2 1 2 2 1

23 7 .
4 4E E M M E M E M

C  (62) 
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After calculating this potential via summing up the one-to-one interactions 

(61) for the two spheres, we have: 

 2 3 3 7
1 2 1 2

16 /
9

A
S
U d CN N R R d  (63) 

1,2N  being the atomic number densities in the spheres. Since the geometry with 

the most accurate calculation (i.e., the one that hasn’t been subject to any 

approximations) for the Casimir effect is the case of two flat, parallel plates 

(geometrically, two half-spaces compared to atomic penetration depth), we 

will be using this system as a reference to the other systems. The interaction 

potential energy calculated using (61) for two flat, parallel planes is[7] 

 1 2

/24
A
P P

CN N
U d d  (64) 

where 

 
2

3

1
720P

d
d

 (65) 

and the superscript A over U representing that the result is found using the 

additivity principle. Using the well-known formula for the Casimir potential of 

two half-spaces separated by a distance d: 

 
2

3720P
U d

d
 (66) 

we can now define the renormalization factor /AP P
U U  as: 

 1 2/
/24

A
P P

CN N
U U  (67) 
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dividing A
SU d  with (67), we finally find the renormalized potential for two 

spheres: 

 
3 33
1 2

7

2 .
27

A
S

R R
d

d
 (68) 

The comparison of (68) with the formerly known theoretical result (60) yields 

that even for the case of two spheres being the maximally deviating geometry 

with respect to the two half-planes, the error arising from the assumption of 

the additivity principle can not exceed 19.3%; this error only depends on the 

geometry of the system – not to the separation distance. Since, we will focus 

on the relative differences of various systems, this error is acceptable. 

 

 An alternative calculation method is proposed in Hult et al.’s paper[29]. 

 

 

4.3 The Formation of the Geometries 

 

To form the geometries needed, we first filled an empty 3-dimensional 

space, with spheres whose radii and separations were based on the fcc 

structured aluminum atoms. Then, with the help of selection algorithms, we 

have chosen the suitable atoms in order to form the geometries in question. 

Examples of these algorithms are as follows (PHP code): 
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for($counter=0; $counter<$satirsayisi; $counter++) 
{ 
 $n = sscanf($mesaj[$counter], "%f %f %f %d" 
  , &$atomx, &$atomy, &$atomz, &$atomno); 
 if($n != 4) echo "\n<b>hatali satir $counter </b>\n"; 
 
 $bos1= 12-strlen("$atomx"); 
 $bos2= 12-strlen("$atomy"); 
 $bos3= 12-strlen("$atomz"); 
 $bos4=12-strlen("$atomno"); 
 $satir=str_repeat(" ",$bos1).$atomx 
       .str_repeat(" ",$bos2).$atomy 
       .str_repeat(" ",$bos3).$atomz 
       .str_repeat(" ",$bos4).$atomno."\n"; 
 
 if( 
      (abs($atomx)>=$mins&&abs($atomx)<=$maks) 
    ||(abs($atomy)>=$mins&&abs($atomy)<=$maks) 
    ||(abs($atomz)>=$mins&&abs($atomz)<=$maks) 
   ){echo $satir;fwrite($fp,"$satir");} 
} 

 

In this code, ‘$mesaj[$counter]’ is passed as a string in the form: 

 

36.44991    32.39992   -12.14997     24768 

 

where the first three numbers are the atom’s coordinates in the x, y, z-axes 

accordingly and the fourth is the atom label. The file including all of the 

atoms’ positions is generated by Şakir Erkoç’s program. The code parses these 

numbers as the ‘$atomx’, ‘$atomy’, ‘$atomz’ and ‘$atomno’ variables and 

formats these data in a standard form with the help of the ‘str_len’ and the 

‘str_repeat’ command. Then it checks if the coordinates fulfill the 

requirements imposed by the boundary conditions, namely ‘$mins’ and 

‘$maks’, denoting the interval for an axis. 
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Similarly, the algorithm for generating a sphere having a shell between 

the two radii ‘$rmin’ and ‘$rmaks’ is handled by the following code: 

 

for($counter=0; $counter<$satirsayisi; $counter++) 
{ 
 $n = sscanf($mesaj[$counter], "%f %f %f %d" 
        , &$atomx, &$atomy, &$atomz, &$atomno); 
 if($n != 4) echo "\n<b>hatali satir $counter </b>\n"; 
 $yaricap=sqrt(pow($atomx,2)+pow($atomy,2)+pow($atomz,2)); 
 $bos1= 12-strlen("$atomx"); 
 $bos2= 12-strlen("$atomy"); 
 $bos3= 12-strlen("$atomz"); 
 $bos4=12-strlen("$atomno"); 
 //$atomz+=10; 
 $satir=str_repeat(" ",$bos1).$atomx 
       .str_repeat(" ",$bos2).$atomy 
       .str_repeat(" ",$bos3).$atomz 
       .str_repeat(" ",$bos4).$atomno."\n"; 
 
 if($yaricap<=$rmaks &&$yaricap>=$rmin){echo 
$satir;fwrite($fp,"$satir");} 
   
} 
 

and for a pyramid with a square having sides of length ‘$taban’ as base and 

with a height ‘$yuksek’, we manipulate the code as follows: 

 

for($counter=0; $counter<$satirsayisi; $counter++) 
{ 
 $n = sscanf($mesaj[$counter], "%f %f %f %d" 
               , &$atomx, &$atomy, &$atomz, &$atomno); 
 if($n != 4) echo "\n<b>hatali satir $counter </b>\n"; 
 
 $bos1= 12-strlen("$atomx"); 
 $bos2= 12-strlen("$atomy"); 
 $bos3= 12-strlen("$atomz"); 
 $bos4= 12-strlen("$atomno"); 
 $satir=str_repeat(" ",$bos1).$atomx 
       .str_repeat(" ",$bos2).$atomy 
       .str_repeat(" ",$bos3).$atomz 
       .str_repeat(" ",$bos4).$atomno."\n"; 
 
 $aa=$taban*($yuksek-$atomz)/(2.0*$yuksek); 
 $a = $aa / 2.0; 
 if(abs($atomz)>0&&$atomz<=$yuksek) 
 { 
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  if(abs(abs($atomx)-$a) < $eps && abs($atomy) >= 0  
     && abs($atomy) <= $a)  
     {echo $satir;fwrite($fp,"$satir");} 
  if(abs(abs($atomy)-$a) < $eps && abs($atomx) >= 0  
     && abs($atomx) <= $a)  
     {echo $satir;fwrite($fp,"$satir");} 
 } 
 if($atomz<-35) 
 { 
  if(abs($atomy) >= 0 && abs($atomy) <= $a  
     && abs($atomx) >= 0 && abs($atomx) <= $a) 
     {echo "<b>$satir</b>";fwrite($fp,"$satir");} 
 } 
} 
 

 

4.4 The Algorithm used in the Simulation 

 

 Since the 7r factor in the formulae yields to some large values when 

“very near atoms’ interactions” occur, and also because of the fact that, at such 

small distances, the Casimir-Polder interactions are interferred grossly by the 

van der Waals interactions (~ 6r ), these small-separation factors were 

eliminated from the calculations. This is achieved by a simple control 

algorithm checking the relative distances between the two atoms in question. 

The algorithm also prevented the calculation of the Casimir potential in 

between the atoms of the same surface. This second procedure was also 

required since, the energy difference between the energy of the isolated 

surfaces and the energy of the formed system is in importance, not their 

isolated values. The part of the code producing this algorithm is as follows 

(FORTRAN-77 code): 
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SLABSON=6400 
IF(J.LT.I) GO TO 30 
IF(I.LE.SLABSON.AND.J.LE.SLABSON) GO TO 30 
IF(I.GT.SLABSON.AND.J.GT.SLABSON) GO TO 30 
IF(J.EQ.I) GO TO 30 
 

Here, there are three variables, namely the ‘I’, ‘J’ and ‘SLABSON’. ‘I’ and ‘J’ 

are the labels of the two atoms in question, while ‘SLABSON’ gives the total 

number of atoms in one body. The control algorithm first checks if ‘J’ is lower 

than ‘I’, so that, only the atoms that have greater atom number are considered, 

thus preventing the recalculation of the interaction between the same atoms 

more than once. Then, it checks if the first and the second atoms belong to the 

first body or, in the next sentence if they are both on the second body: if they 

are, than there is no need to calculate, since, we’re interested only in the 

interaction between the atoms on different bodies. Lastly, the algorithm checks 

if these two atoms are identical, thus preventing a loop-hole where the case is 

0 units separation. 

 

 

4.5 The Scaling Factor 

 

 After the calculations, it has been observed that, the elimination of very 

near atom interactions wasn't sufficient enough to achieve the experimental 

and the theoretical results: the relatively small simulation system was still 

coping with the calculations due to its relatively short inter-atomic distance. 
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To overcome this factor, we ran the simulation of a well known system (being 

the two parallel slabs) for numerous times and tried to achieve the converging 

value. The graph of these runs can be seen in Figure 12. 
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Figure 12: Renormalized energy graph vs. distance for paralel slab 
formation. The legend shows the number of atoms in each slab. 

The solid line represents the theoretical Casimir energy. 



 

In this graph, Casimir potentials of slabs consisting of different number of 

atoms are plotted with the theoretical Casimir potentials corresponding to the 

appropriate distances. The distances are in Å, while, the energies are in 1
Å

 

where natural unit system is used ( 1, 1c ). 

 

Similar processes are done with other trivial systems such as “Atom vs. 

Atom” and “Atom vs. Slab” and as expected, it has been seen that, these runs 

also yielded similar convergences. “Atom vs. Slab” system results can be seen 

in Figure 13. 
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Figure 13: Renormalized energy graph vs. distance for atom vs. slab 
mation. The legend shows the number of atoms in the slab. The solid line 

represents the theoretical Casimir energy. 
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In this graph, Casimir potentials of slabs consisting of different number of 

atoms within vicinity of a single atom are plotted with the theoretical Casimir 

potentials corresponding to the appropriate distances. The distances are in Å, 

while, the energies are in 1
Å

 where natural unit system is used ( 1, 1c ). 

 

Using the approximate ratios between the appropriate system's 

converging energy factor and the theoretical Casimir potential, the scaling 

factor is obtained. This rationing method is based primarily on the method 

used for renormalizing the non-trivial topology-caused deflections which is 

derived by Mostepanenko and Trunov that is explained in section 4.2. But, 

since the geometries include contained systems, the error will, in general, be 

higher than the original renormalization method's error. 

 

4.6 The Results 

  

By means of the techniques explained above, we were able to calculate the 

Casimir potentials for the following geometries: 
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4.6.1. Concentric Spherical Shells 

 

In this model, the inner shell with radius 7 to 10 Å contains 170 atoms and the 

outer shell with radius 37 to 40 Å contains 3336 atoms as shown in figure 14. 

The renormalized energy for this model is calculated as 4 -17.2411261 10 Å  

(in natural units). 

 

Figure 14: Concentric spherical shells 
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4.6.2. A Spherical Shell Inside A Cubic Shell 

 

In this model, the spherical shell with radius 30 to 34 Å contains 3090 atoms 

and the cubic shell with line lengths 35 to 40 Å contains 5999 atoms as shown 

in figure 15. The renormalized energy for this model is calculated as 

-15.449791Å  (in natural units). 

 

 

Figure 15: Spherical shell inside a cubic shell 
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4.6.3. A Spherical Shell Inside A Pyramid 

 

In this model, the spherical shell with radius 7 to 10 Å contains 170 atoms and 

the pyramid with dimensions 20x20x35 Å contains 1057 atoms as shown in 

figure 16. The renormalized energy for this model is calculated as 

-11.426447 Å  (in natural units). 

 

 

 

 

 

Figure 16: Spherical shell inside a pyramid 
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4.7 Discussion and Conclusions 

 

 As can be verified from the results above, using relatively small 

systems in the simulation results in high potentials. But, since we are 

interested in the comparisons of these geometries, this is acceptable. We see 

that, when parallel surfaces are used, the energy stored in the system is 

relatively small when compared with a system consisting two different 

geometries. The systems formed by different types of geometries can be used 

for storing energy because of the sign dependence of the Casimir force on the 

geometry. In a recent article written by Manzoni and Wreszinski[30], the 

repulsive force in the case of a cube, sliced from the half was calculated. A 

similar calculation was done many years ago by Boyer[31] concerning a 

sphere sliced from the half. Were the experiments of these theoretical 

situations done with the concentric systems included, our predictions based on 

the simulation shows that, a considerable, measurable force sign change would 

occur. However, we don’t expect the experimental measurement of these 

systems to happen in a near future because of the difficulties in forming such 

small, properly oriented systems and the current measurement techniques’ 

lacking of proper measuring the force from inside the container shell without 

interfering with the system itself. As we tried to explain above, both the old 

techniques (including the capacitor - spring combination) and the new 

techniques (including the atomic force microscope which measures the 
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deflection of the incident laser from the surface) are incapable of coping with 

the systems simulated. We have used aluminum atoms for them being mostly 

used in experiments.  

 

 In our simulations, we didn’t take account of the temperature and the 

surface roughness of the system, but this can also be accepted since, in 

simulation, all of the systems were assumed to be in the same condition, thus, 

making our comparisons more reliable. Details of refining with respect to 

temperature and surface roughness can be found in experimental and guidance 

articles [6, 22 - 24, 32]. We have considered the systems for a single condition 

– variations in the conditions are easily applicable including various separation 

distances. 

 

 4 days prior to this thesis’ presentation, an article written by Ahmedov 

and Duru was submitted to the arxiv.org e-text library giving a full theoretical 

solution to the concrete spherical shells formation [33]. Now that we have an 

exact solution for one of the systems considered in this thesis, more 

successfull algorithms can be derived and developed. 

 

 The simulation can be applied to more complex geometries like a triple 

concentric cubes, spheres or systems consisting of other systems as building 
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blocks like a cube constructed by two or more pyramids. Also, an interesting 

geometry would be a configuration of three parallel slabs.  
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APPENDIX 

 

 

PROOF: A FIELD MODE IS IDENTICAL TO A HARMONIC 

OSCILLATOR[4,6] 

 

 

 

The Maxwell equations for the “free” field (the field in a region where 

there are no sources are): 

 0E  (1) 

 0B  (2) 

 
1
c t
BE  (3) 

 
1
c t
EB  (4) 

 B A  (5) 

Since 0A , (2) is also satisfied. (3) implies 1
c t
AE , 

where  is the scalar potential. From (4), we derive 
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2

2
2 2

1 0
c t

AA  (6) 

for the Coulomb gauge defined by 0A  and in the absence of any 

sources 0 . Now, (1) is also satisfied. Therefore, we can obtain a solution 

of the free space Maxwell equations by solving (6) for the Coulomb gauge 

vector potential subject to the appropriate boundary conditions. 

 

Separation of variables gives monochromatic solutions 

 
* *

0 0

* *
0 0

,

0 i t i t

t t t

e t e

A r A r A r

A r A r
 (7) 

where 0A r  satisfies the Helmholtz equation 

 2 2
0 0 0 /k k cA r A r  (8) 

and t  satisfies 2t t . Then, the electric and magnetic field 

vectors are given by 

 
* *

0 0

* *
0 0

1, ,

, .

t t t
c

t t t

E r A r A r

B r A r A r
 (9) 

The electromagnetic energy is proportional to 

23 2 2 3 * 3 *2 2
2 20 0

223 32
2 0 0

22* 3 *
0

22 3 *
0 0

1 1d d d

2 d d

d

2 d . .

r t r t r
c c

t r t r
c

t r

t r

E B A r A r

A r A r

A r

A r A r

 (10) 

If we take  
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23 2 3 2

0 0d dr k rA r A r  (11) 

and with similar expressions for the terms involving 
2*

0A r  and 

2

0A r  in (10) with 2 22t t  since t i t , then (10) 

simplifies to 

 
2

23 2 21 d
8 2F

kH r tE B  (12) 

where we assumed the mode function 0A r  is normalized  

 
23

0d 1 .r A r  (13) 

If we define the real quantities 

 * ,
4
iq t t t

c
 (14) 

 *

4
kp t t t  (15) 

equation (12) becomes 

 2 2 21 .
2F

H p q  (16) 

This means that, our field mode of frequency  is mathematically equivalent 

to a harmonic oscillator with frequency . 

 


