MAGNEXT

Computer determination of Systematic Extinction Rules for Magnetic Space Groups

Samuel V. Gallego, Emre S. Tasci, Gemma de la Flor,

J.M. Perez-Mato, Mois I. Aroyo

University of the Basque Country, Condensed Matter Physics Department, Bilbao, SPAIN.

email: cryst@wm.lc.ehu.es www.cryst.ehu.es

BILBAO CRYSTALLOGRAPHIC SERVER

The Bilbao Crystallographic Server is a free access website with crystallographic databases and programs. The server gives access to the

MAGNETIC SPACE GROUPS

Time-inversion symmetry + 230 Space Groups: 1651 Magnetic Space Groups 26 Dravais Lattica

	MGENPOS	
General positi	ons for Magnetic Space	ce Group
Generators an	d General Positions For Magnetic Space Gro	oups
How to select the group	Please, enter the sequential number of the group	choose it 44.23
The space groups are specified by their serial number as defined and compared in the references: <i>Magnetic Space Groups</i> by D.B. Litvin (v3.02); <i>Table of Magnetic Space Groups</i> by H.T. Stokes and B.J. Campbell. You can give this	Transformation Matrix	
number (either in <i>BNS</i> or <i>OG</i> notation), if you know it, or you can choose it from the table with the space group numbers and symbols by clicking on the button [choose it].	-OR-	
To see the data in a non conventional setting, please define	Rotational part	O

MWYCKPOS

Wyckoff positions for Magnetic Space Groups

Wyckoff Positions of the Group Pcbcm (#57.391) [OG: Cpm'cm #63.11.521]

databases containing the data from the International Tables of	JO Dravais Lattices	The space groups are specified by their serial number as defined and compared in the references. Magnetic Space Transformation Matrix	Multiplicity Wyckoff Ietter Coordinates
Crystallography vol. A, Space Group Symmetry, and vol. A1, Symmetry Relations between Space Groups, providing very useful information for studies related with crystal-structure symmetry, phase transitions and solid state problems. The available software is divided in several shells	FOUR TYPES of Magnetic Space GroupsTYPE 1: White groupsTYPE 2: Grey groupsFedorov Space GroupsFedorov Space Groups + 1'Forromagnetic PhasesParamagnetic Phases	Groups by D.B. Litwin (vs.02); rable or Magnetic Space Groups by H.T. Stokes and B.J. Campbell. You can give this number (either in BNS or OG notation), if you know it, or you can choose it from the table with the space group numbers and symbols by clicking on the button [choose it]. To see the data in a non conventional setting, please define your transformation matrix in xyz format. The data used in this application is based on the data obtained from: Hareld T. Stakes and Bratten L. Completing Magnetic Space	$16 \qquad h \qquad \begin{pmatrix} x,y,z \mid m_x,m_y,m_z) & (x,-y+1/2,-z \mid m_x,-m_y,-m_z) & (-x,y+1/2,-z+1/2 \mid -m_x,m_y,-m_z) \\ (-x,-y,z+1/2 \mid -m_x,-m_y,m_z) & (-x,-y,-z \mid m_x,m_y,m_z) & (-x,y+1/2,z \mid m_x,-m_y,-m_z) \\ (x,-y+1/2,z+1/2 \mid -m_x,m_y,-m_z) & (x,y,-z+1/2 \mid -m_x,-m_y,m_z) & (x+1/2,y+1/2,z \mid -m_x,-m_y,-m_z) \\ (x+1/2,-y,-z \mid -m_x,m_y,m_z) & (-x+1/2,y,-z+1/2 \mid m_x,-m_y,m_z) & (-x+1/2,-y+1/2,z+1/2 \mid m_x,m_y,-m_z) \\ (-x+1/2,-y+1/2,-z \mid -m_x,-m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (x+1/2,-y+1/2,z+1/2 \mid m_x,m_y,-m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,y,z \mid -m_x,m_y,m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,y+1/2,-z+1/2 \mid m_x,m_y,-m_z) & (-x+1/2,-y,z+1/2 \mid m_x,-m_y,m_z) \\ (x+1/2,-y,-z+1/2 \mid m_x,-m_y,-m_z) & (-x+1/2,-y,-z+1/2 \mid m_x,-m_y,-m_z) \\ (x+1/2,-y,-z+1/2 \mid m_x,-m_y,-m_z) & (x+1/2,-y,-z+1/2 \mid m_x,-m_y,-m_z) \\ (x+1/2,-y,-z+1/2 \mid m_x,-m_y,-m_z) & (x+1/2,-y,-$
according to different topics.	TYPE 3: Black-and-white groups TYPE 4: Black-and-white groups	General Positions of the Group /m'm'2 (#44 232)	8 g $ \begin{pmatrix} x,y,1/4 \mid 0,0,m_z) & (x,-y+1/2,3/4 \mid 0,0,-m_z) & (-x,y+1/2,1/4 \mid 0,0,-m_z) \\ (-x,-y,3/4 \mid 0,0,m_z) & (x+1/2,y+1/2,1/4 \mid 0,0,-m_z) & (x+1/2,-y,3/4 \mid 0,0,m_z) \\ (-x+1/2,y,1/4 \mid 0,0,m_z) & (-x+1/2,-y+1/2,3/4 \mid 0,0,-m_z) \end{pmatrix} $
	t-subgroups of Grey Groups k-subgroups of Grey Groups	[OG: Im'm'2 #44.4.327] NOTE: The transformation matrix you have given has a determinant det(P) = 4.	8 f $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
MAGNETIC SPACE GROUPS'	Antiferromagnetic PhasesAntiferromagnetic PhasesAntiferromagnetic Phases(propagation vector k ≠ 0)Complex Magnetic Structures(propagation vector k ≠ 0)	Standard/Default Setting Transformed (x,y,z) form matrix form (x,y,z) form matrix form	8 e $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	TYPE 4: Two settings in use:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 d $(0,0,0 m_x,m_y,m_z)$ $(0,1/2,0 m_x,-m_y,-m_z)$ $(0,1/2,1/2 -m_x,m_y,-m_z)$ $(0,0,1/2 -m_x,-m_y,m_z)$ $(1/2,1/2,0 -m_x,-m_y,-m_z)$ $(1/2,0,0 -m_x,m_y,m_z)$ $(1/2,0,1/2 m_x,-m_y,m_z)$ $(1/2,1/2,1/2 m_x,m_y,-m_z)$
Tables of Magnetic Space bilbao crystallographic server	OG setting BNS setting	$\begin{bmatrix} 2 & x + nz, y + nz, z + nz \\ 0 & 0 & 1 & 1/2 \end{bmatrix} \xrightarrow{x + nz, y, z + n4} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1/4 \end{bmatrix}$ $\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \xrightarrow{x + y \cdot z} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$	4 c $\frac{(3/4, y, 1/4 \mid 0, 0, m_z) (3/4, -y+1/2, 3/4 \mid 0, 0, -m_z) (1/4, y+1/2, 1/4 \mid 0, 0, -m_z)}{(1/4, -y, 3/4 \mid 0, 0, m_z)}$
Groups General Positions [The crystallographic site at the Condensed Matter Physics Dept. of the University of the Basque Country] [Space Groups][Layer Groups][Rod Groups][Frieze Groups][Wyckoff Sets]	than the paramagnetic one	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 b $(3/4, 1/4, 0 0, 0, 0)$ $(1/4, 3/4, 0 0, 0, 0)$ 4 a $(3/4, 3/4, 0 0, 0, 0)$ $(1/4, 1/4, 1/2 0, 0, 0)$ $(1/4, 1/4, 0 0, 0, 0)$ (3/4, 3/4, 0 0, 0, 0) $(1/4, 1/4, 1/2 0, 0, 0)$ $(1/4, 1/4, 0 0, 0, 0)$
Space Groups Retrieval Tools GENPOS Generators and General Positions of Space Groups WYCKPOS Wyckoff Positions of Space Groups HKLCOND Reflection conditions of Space Groups MAXSUB Maximal Subgroups of Space Groups Series Series of Maximal Isomorphic Subgroups of Space Groups WYCKSETS Equivalent Sets of Wyckoff Positions NORMALIZER Normalizers of Space Groups KVEC The k-vector types and Brillouin zones of Space Groups Symmetric Space Groups Retrieval Tools Magnetic Space Groups Retrieval Tools Magnetic Space Groups Retrieval Tools Magnetic Space Groups Magnetic Space Groups Wyckoff Positions of Magnetic Space Groups Magnetic Space Groups Wyckoff Positions of Magnetic Space Groups Magnetic Space Groups Wyckoff Positions of Magnetic Space Groups Magnetic Space Groups Wyckoff Positions of Magnetic Space Groups Magnetic Space Groups Wyckoff Positions of Magnetic Space Groups	Convenient for experiments Convenient for fieldy Image: Convenient for experiments Image: Convenient for experiments Image: Convenient for experiments Image: Convenient for experiments <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
space droups	Different indexation and extinction rules	Tables of Magnetic Space Groups of Stokes used as source for the development of MGENPOS	S-and MWYCKPOS: <u>http://stokes.byu.edu/magneticspacegroups.html</u>

MAGNETIC DIFFRACTION

Diffraction patterns for magnetic unpolarised neutron diffraction: **NUCLEAR** and **MAGNETIC** contributions superposed at low-T

GETTING EXTINCTION RULES

Magnetic Structure Factor is an axial vector defined by the Magnetic Moment density inside the unit cell:

 $\vec{\mathbf{F}}(\vec{\mathbf{H}}) = \int \vec{\mathbf{M}}(\vec{\mathbf{r}}) e^{i2\pi \vec{\mathbf{H}} \cdot \vec{\mathbf{r}}} d\vec{\mathbf{r}}$

Crystal symmetry restriction:

 $\vec{\mathbf{F}}(\tilde{\mathbf{R}}\vec{\mathbf{H}}) = \mathbf{m} \cdot \det(\mathbf{R}) \cdot e^{i2\pi \vec{\mathbf{H}} \cdot \vec{\mathbf{t}}} \cdot \mathbf{R} \cdot \vec{\mathbf{F}}(\vec{\mathbf{H}}) = \vec{\mathbf{F}}(\vec{\mathbf{H}})$

Extinctions restricted to **subspaces of reciprocal space Diffracted intensities** dependence on structure factor

More Elegant and Direct Method:

New representation of the group:

 $\mathbf{T}(\mathbf{R},\mathbf{m}) = \mathbf{m} \cdot \det(\mathbf{R}) \cdot e^{i2\pi \mathbf{H} \cdot \mathbf{t}} \cdot \mathbf{R}$

Projecting this representation onto the Structure Factor Vector leaves it to a restricted by symmetry form:

FUTURE DEVELOPMENTS ON MAGNEXT

EXTINCTION RULES IN ANY SETTING

New Option: user-given Magnetic Space Group Generators (or General Positions) to obtain

INCOMMENSURATE **STRUCTURES**

Extinction Rules for Magnetic Superspace Groups (Incommensurate Structures) given by user

MAGNETIC SPACE GROUP FINDER

Lists of all COMPATIBLE MAGNETIC SPACE **GROUPS** with a set of Extinction Rules or a diffraction pattern given by user

SYSTEMATIC EXTINCTIONS ANALYSIS IS HELPFUL TO SOLVE MAGNETIC STRUCTURES

Magnetic Structures Partially Solved by Extinction Rules Analysis

$MnF_2 - P4_2/m$	MnF ₂ – P4 ₂ /mnm General Positions of the Group P4 ₂ (#136 [OG: P4 ₂ #136.5.1156]					6.499)
Magnetic Extinction rules	Possible	N	(x,y,z) form	Standard/Defau matrix form	It Setting geom. interp.	label
from experiment.	10551010	1	x, y, z m _x ,m _y ,m _z		1 <u>+1</u>	(1 0,0,0)
	groups:	2	-X, -Y, -Z m _X ,m _y ,m _Z	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$	-1 0,0,0 <u>+1</u>	(-1 0,0,0)

0	\bigcirc	0	•	0	\bigcirc	0
0	0	•	+	•	0	0
0	•	0	•	0	•	0
•	0	•	+	•	0	•
•		•		•		•

LaMnO ₃ – Pnma
