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ABSTRACT 

 
 

GENERATION AND SIMULATIONS OF NANOSTRUCTURES OF CAGE 
STRUCTURES 

 
 
 

Taşcı, Emre 

Ph.D., Department of Physics 

Supervisor : Prof. Dr. Şakir Erkoç 

 

 

July 2007, 97 pages 
 
 
 
 
This thesis proposes algorithms to construct various nanosystems such as nanotori, 

nanogear and nanojunctions based on graphite type structures, exploiting the 

observed pentagonal and heptagonal defects. These produced systems are then 

simulated to test for their thermal stability and for their electronic properties. A 

brief review of the methods used is also included. 

 
 
 
 
Keywords: Graphite based nanosystems, construction algorithm, molecular 
dynamics, simulation. 
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ÖZ 
 
 

KAFES YAPIDAKİ NANOYAPILARIN ÜRETİLMESİ VE BENZETİMLERİ 
 
 
 

Taşcı, Emre 

Doktora, Fizik Bölümü 

Tez Yöneticisi : Prof. Dr. Şakir Erkoç 

 

 

Temmuz 2007, 97 sayfa 
 
 
 
 
Bu çalışma nanotoruslar, nanoçarklar, nanobirleşimler ve benzeri grafit tabanlı 

nanoyapıların gözlemlenmiş olan beşgen ve yedigen bozukluklardan faydalanılarak 

üretilmesine dair algoritmalar sunmaktadır. Üretilen bu yapılar ayrıca ısıya karşı 

dayanıklılıklarını incelemek üzere benzetimlere tabi tutulmuş ve elektronik 

özelliklerini belirlemek üzere birtakım hesaplamalarda bulunulmuştur. Çalışma, 

kullanılan yöntemlere dair kısa bir açıklama da içermektedir. 

 
 
 
 
Anahtar Kelimeler: Grafit tabanlı nanosistemler, üretim algoritmaları, moleküler 
dinamik, benzetim. 
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 CHAPTER 1  
 

 

INTRODUCTION 

 

 

Starting with Iijima’s discovery of carbon nanotubes in 1991 [1], nanostructures 

begin to play a very important role in the construction of the state-of-the-art devices 

[2-6], applicable everyday technology [7], and they are one of the most promising 

medium in the long sought alternative energy solutions [8-13]. 

 

Although they are still being examined and experimented upon, it is accepted that 

the day they will be items of manufacture are not very far [14,15]. But, until that 

date, more heavy research keeps on being conducted worldwide. Because of the 

high costs and limitation of the current measuring devices, a dominant percent of 

the research includes computer simulations. Even for hard-wired experiments, there 

is almost always an initial simulation process which gives idea to formulate the 

outcome expectations. 

 

In this work, we present a new and efficient method to model some specific 

structures such as tori, helix, n-toothed gears and toothed canals as well as a way to 

merge any number of zigzag or armchair type nanotubes. Using the outcome 

structures of this work, one will be able to construct model systems to use in any 

molecular simulation processes. We also included the results of some of our 

simulations containing of these systems. 

 

We have focused on systems that are of carbon graphite derivatives but the method 

can easily be implemented upon other hcp packed atoms. The reason for us to 

choose carbon is the widely tested, verified and reported carbon system 

experiments. Recently other elements doped carbon systems [16-18] and even gold 
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nanotubes [19] have been reported and as long as they obey similar bonding rules, 

they can be also employed by the present method. 

 

The thesis is divided in four main sections. In the second section, we discuss the 

theoretical methods to generate various structures along with suggestions for 

implementation of these methods into programming code with the help of 

algorithms. These methods are divided into three subsections being the force fields 

and potential functions specific to the systems investigated being the MM+ and the 

Tersoff potential, then a brief introduction is given on optimization techniques 

beginning with the steepest descent algorithm for tutorial purposes and continuing 

with the more complex conjugate gradient methods such as the Fletcher-Reeves and 

the Polak-Ribiere optimization procedures, third subsection of the ‘methods’ section 

is devoted to the molecular dynamics where the ‘motor’ of the molecular dynamics 

simulations being the Verlet algorithm is derived along with the principals in the 

simulation process. The second section concludes with a simplified introduction to 

the electronic orbitals and their semi-empirical calculations via the Extended 

Hückel method. Third section is devoted to the construction methods, and 

algorithms if applicable, of various nanocage structures. Due to their forming 

differences, ‘brute-force’ cross junctions, nanotori and nanogears were dealt in 

separate subsections whereas similar forming structure groups such as nanohelix in 

similarity with nanotori or multi-junctions and toothed canals in similarity with 

nanotori were grouped together. In the fourth section, the stability, dynamics and 

electronic properties of these systems constructed via the procedures described in 

the previous section are investigated through simulation and the simulation results 

with the details of the related parameters are presented and discussed. The fifth 

section titled ‘Conclusion’ aims to summarize what has been done and to point out a 

possible future scenario. 
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CHAPTER 2 
 

 

SIMULATION AND COMPUTATIONAL TOOLS, 

METHODS AND ALGORITHMS 

 

 

2.1   Force Fields and Potential Functions 

 

The primary aim of molecular mechanics (MM) is to predict the possible formation 

of an unknown molecule by finding the positions that yield the minimum energy 

arising from the interactions between its atoms, thus obtaining the most stable form 

which generally corresponds to its natural geometry. Molecular dynamics (MD) 

also need a method to calculate the impulses generated by the interactions between 

the atoms so that it can proceed and locate the components in advanced times. In 

order to calculate the energies and the forces, we must know the formulated 

interaction equations and the different parameter sets for different types of atoms 

including different hybridizations and configurations of the same atoms. These 

potentials are given by the so called force fields and potential functions. In general, 

bond information considering force fields are used for molecular mechanics 

calculations, whereas for molecular dynamics, those potentials which enable bond 

formations and bond breaking are employed - as MM try to find the most stable 

structure whereas MD seek a realistic simulation of a natural process.  

 

A modern force field consists of various interaction components such as bond-

stretching, angle-bending, out-of-plane bending, dihedral motions, non-bonded 

interactions, Coulomb interactions, and such. Different types of force fields have 

been developed for different atom types and different environments. Among these 

force fields, to summarize the most popular ones, Dreiding [20] is parameterized for 
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H, C, N, O, P, S, F, Cl, Br and I; MM3 developed by Allinger [21,22] and MM+ by 

Hypercube [23] deals mainly with hydrocarbons with MM+ having a wildcard 

guessing model, Amber [24] and OPLS [25] (Optimized Potentials for Liquid 

Simulations) specializes on amino acids and proteins and the Johnson [26] force 

field is specific to pure elements Fe, W and V.  

 

2.1.1 MM+ Force Field Components 

 

This subsection is mainly based on the manual of Hypercube’s HyperChem 

software manual [23]. 

 

2.1.1.1 Bond Stretching 

 

A bond in a molecule can be modeled as a spring connecting two masses, 

oscillating towards the equilibrium distance. MM+ formulates this behavior as:  

 

( ) ( )2
0 0 0

1 1 4143.88 1 switch , ,
2 3 3bond r

bonds

E K r r r r CS CS CS r r⎡ ⎤⎛ ⎞= − + − − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (2.1) 

 

with CS set to -2.0 and the cut-off functions switch is defined as 

 

 
( )
( )

( ) ( ) ( )
( )

2

3

switch , , 1

switch , , 0

2 3
switch , , .

x a b x a

x a b x b

b x b x a
x a b a x b

b a

= ≤

= ≥

− + −
= < <

−

(2.2) 

 

This cut-off function maintains a swift transition between the omitted and active 

regions. It also fixes the original MM2 potential’s repulsive behavior when 
2

0 3r r CS− > . This potential is very different than the classical ones because of the 

cubic stretch term. Although this difference separates the model from the standard 

spring model, nonetheless, it behaves more accurate when experimental results are 
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considered. The unit of the energy is kcal/mol where Kr is the empirical ‘spring’ 

coefficient for the atoms in questions. 

 

2.1.1.2 Bond Dipoles 

 

In MM+, the electrostatic contributions come from bond dipole moments associated 

with polar bonds. The center of the dipole is defined to be the midpoint of the bond 

and for two dipoles iμ  and jμ  separated by ijR  as shown in Figure 1, their dipole 

interaction energy is given as: 

 

 3
,

cos 3cos cos
14.39418 i j

dipole i j
i j polar bonds ij

E
R

χ α α
ε μ μ

∈

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (2.3) 

 

where ε  is the dielectric constant of the medium, χ is the angle between the two 

dipole vectors and iα  and jα  are the angles that the two dipole vectors make with 

the ijR  vector. The constant 14.39418 is used to convert the ergs/mol energy unit to 

kcal/mol. 

 

 

 
 

Figure 1: Bond dipoles 
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2.1.1.3 Angle Bending  

 

The restoring energy for the angles disturbed from their equilibrium values is 

calculated by means of the even function 

 

 ( ) ( )2 4
0 0

10.043828 1
2bond angle i i

i
E K SFθ θ θ θ θ⎡ ⎤= − + −⎣ ⎦∑  (2.4) 

 

The SF term multiplying the sextic bending term is equal to 87.0 10−×  and the 

constraint 0.043828 converts the unit from millidyne-Å per radian2 to kcal/mol per 

degree2. Kθ  is the force constant, 0θ  is the equilibrium bond angle and iθ  is the 

bond angle. 

 

2.1.1.4 Bond Stretch and the Angle Bending Cross Term 

 

Allinger’s concept of coupling the components [21,22] was a revolutionary idea of 

his time. By means of this correction factor, much more accurate results could be 

achieved. Between three bonded atoms labeled i,j and k (k being the center atom), 

the MM+ couples the stretching of the ik and jk bonds with the angle as: 

 

 ( ) ( ) ( )0 0 02.51118stretch bend sb ikj ik jk
angles

E K r r r rθ θ−
⎡ ⎤= − − + −⎣ ⎦∑  (2.5) 

 

The constant 2.51118 converts the unit from millidynes per radian to kcal per 

degree. 

 

2.1.1.5 Out-of-Plane Bending 

 

An sp2 hybridized atom tends to be coplanar with the 3 atoms it is bonded. To 

model this effect, the angle bending interactions are calculated with respect to the 
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image of the atom onto the plane its bonded atoms define, rather than its actual 

position.  

 

This fact is illustrated in Figure 2: Rather calculating the angle bending energies for 

the angles AXB, AXC and BXC, we use the angles AYB, AYC and BYC. 

 

 

 

 
 

Figure 2: Out-of-Plane Bending 

 

 

 

2.1.1.6 Dihedral Motions 

 

The torsion that arises from the bondings of 4 atoms with 2 planes is shown in Fig. 

3. The interaction energy for the dihedral motions is given by the formula: 

 

 ( ) ( ) ( )31 21 cos 1 cos 2 1 cos3
2 2 2dihedrals i i i

i

VV VE φ φ φ= + + − + +∑  (2.6) 

 

where 1V , 2V  and 3V are given in kcal/mol units. 
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Figure 3: Dihedral motions 

 

 

 

2.1.1.7 van der Waals 

 

The MM+ interactions do not use a Lennard Jones potential as is the custom, but 

combine an exponential repulsion with an attractive R-6 dispersion interaction. The 

basic parameters are the van der Waals radii *
ir  for the atoms and a hardness 

parameter iε  that determines the depth of the attractive well and the relative 

difficulty to push the atoms close together. The parameters for a nonbonded pair i,j 

is then calculated as: 

 

 * * *
ij i jr r r= +  (2.7) 

 ij i jε ε ε=  (2.8) 

 

and the van der Waals interaction is given by: 

 

 ( )5 62.9 10 exp 12.5 2.25vdW ij ij ij
ij vdW

E ε ρ ρ −

∈

⎡ ⎤= × − −⎣ ⎦∑  (2.9) 

 

where 
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 * .ij
ij

ij

R
r

ρ =  (2.10) 

 

At short distances, ( )3.311ÅijR ≤  the above expression is replaced by: 

 

 2336.176 .vdW ij ij
ij vdW

E ε ρ−

∈

= ∑  (2.11) 

In this section, the unit of the calculated energies are given in kcal/mol units, 

distances are in Å and angles are in radian. 

2.1.2 The Tersoff Potential 

 

The Tersoff potential energy function [27] developed for carbon [28] employs two 

and three body interactions and the total interaction energy is taken to be the sum of 

the total two-body and the three-body interactions: 

 

 2 3φ φΦ = +  (2.12) 

 

Total two-body and three-body energies are given as: 

 

 ( )1
2 ij

N

i j

A Uφ
<

= ∑  (2.13) 

 ( )

1 2

2
3

,
1

nn
N N

n
ij ijk

i j k i j
B U Wφ β

−

< ≠

⎡ ⎤⎛ ⎞
⎢ ⎥= − + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑  (2.14) 

 

where ijU  and ijkW  represent the two-body and three-body interactions, respectively 

and defined by: 

 

 ( ) ( ) ( )1
1expij c ij ijU f r rλ= −  (2.15) 

 ( ) ( ) ( )2
2expij c ij ijU f r rλ= −  (2.16) 

 ( ) ( )ijk c ik ijkW f r g θ=  (2.17) 
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where 

 

 ( )
( )

2 2

22 2
1

cos
ijk

ijk

c cg
d d h

θ
θ

= + −
+ −

 (2.18) 

 

and 

 

 ( ) ( )

1,
1 1 sin / ,
2 2 2

0,

c

r R D

f r r R D R D r R d

r R D

π
< −⎧

⎪⎪ ⎡ ⎤= − − − < < +⎨ ⎢ ⎥⎣ ⎦⎪
⎪ > +⎩

(2.19) 

 

with the parameters set for the carbon atom are given as follows: 

 

 

-1 -1
1 2

7

1393.6 346.74
3.4879Å 2.2119Å
1.5724 10 0.72751
38049 4.3484

0.57058 1.95Å
D=0.15Å

A eV B eV

n
c d
h R

λ λ
β −

= =
= =
= × =
= =
= − =

 (2.20) 

 

2.2 Molecular Mechanics and Energy Optimization 

 

Molecular mechanics try to find the optimum configurations of the atoms of a 

system that minimizes the interaction energies defined via a force field. In 

minimizing the system energy, various methods can be employed. The two 

optimization methods used in this thesis study are the steepest descent and the 

Polak-Ribiere optimization. While Polak-Ribiere optimization is faster when the 

system is near to the optimum configuration, the steepest descent method is favored 

in the first optimization steps, converging the system to a configuration that is near 

to the optimized one. It is advisable to start with the steepest descent method and 

then switching to the Polak-Ribiere method. While both methods can stuck in local 
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minima instead of the global minima, this problem can be checked and improved 

using various other methods to increase the probability that the minima achieved is 

a global one. 

 

2.2.1 The Steepest Descent Algorithm 

 

The steepest descent method uses the gradient of the potential in approaching the 

minima. In a system of N atoms, we have 3N components for the positions. If we 

are to calculate the gradient of the potential with respect to these 3N positions, and 

relocate the positions towards this gradient, we arrive at a better configuration. 

Modeling the force field derived from the gradient of the potential as a landscape 

with hills where the potential is high and valleys where it is low, we can think of the 

configuration as a marble released. It will move towards where the field is weaker 

(another way of saying, it will be affected more effectively with the strong field 

areas causing it to move, while strolling more swiftly and gently in the weaker force 

fields). 

 

Having calculated the gradient, one can say that the optimum lies in the direction of 

the strongest (i.e. highest) gradient component. To formulate, we can denote this 

direction g ( ( )f r  being the potential function) by: 

 

 ( )
( )

i
i

i

f
f

−∇
=

∇
r

g
r

 (2.21) 

 

and the improved position vector is derived as follows: 

 

 1i i i iλ+ = +r r g  (2.22) 

 

where λ  is defined as the step size, as the name implies, the parameter to control 

how much relocation in this direction is going to be realized. One can use small but 

efficient algorithms like the Golden Section Search [29] or the Armijo [29] 

algorithm or utilize some basic algorithm [23] as simple as: 



 12

 

1. Choose an initial step size. 

2. Take a step in the direction defined by (2.21) and calculate the 

configuration. 

3. If the arrived configuration generates a higher interaction energy, return 

to the configuration at the beginning of the 2nd step, take the new step 

size to be the half of the current step size and proceed to the 2nd step. If 

the arrived configuration generates a lower interaction energy then take 

the new step size as 1.2 times the current step size and proceed to the 2nd 

step. 

 

Although the steepest descent algorithm is fast and easy to employ, the main 

drawback is, as mentioned earlier in this section, its convergence towards a 

minimum is very slow. This can be seen in Figure 4 [23]. 

 

 

 

 
 

Figure 4: The Steepest Descent Method 

 

 

 

Let’s suppose the system has a minimum at point M and our system is initially at 

point A. For a chosen step size, the algorithm finds point B, and then takes on from 
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there to some point along the B-C path. With a larger initial step size, we can reach 

point D from A, but the next step arrives us to a point on the D-E path which 

diverges from the minimum.  It will take many steps to arrive to point M, the 

algorithm jumping around this point. One can also use infinitesimal step sizes and 

can trace the path shown in the figure from point A to M but this will cost in 

calculation time. So, steepest descent method should be used at the beginning of the 

optimization and then must be switched to a more efficient method. 

 

2.2.2 Conjugate Gradient Methods with the Fletcher-Reeves and Polak-

Ribiere procedures 

 

This subsection summarizes the concepts as expressed in References [23,29-31]. 

 

The main difference of the conjugate gradient methods from the steepest descent 

method is that, it ‘remembers’ the previous direction and searches for a better 

alternative based on this one. It first begins a rough line search in the given 

direction ih  for the optimum step size. Then, calculates the gradient at this point 

and derive the new conjugate direction 1i+h  using the formula 

 

 1 1 1 .i i i iγ+ + += +h g h  (2.23) 

 

The coefficient γ  is described by various procedures. Of these procedures, two 

frequently used in energy optimizations are the Fletcher-Reeves and the Polak-

Ribiere procedures. Fletcher-Reeves procedure calculates the coefficient γ  as 

 

 1 1
1

i i
i

i i

γ + +
+

⋅
=

⋅
g g

g g
 (2.24) 

 

while the Polak-Ribiere procedure calculates the coefficient γ  as 

 

 ( )1 1
1 .i i i

i
i i

γ + +
+

− ⋅
=

⋅
g g g

g g
 (2.25) 
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For quadratic functions, Equations (2.24) and (2.25) are identical [31] but for non-

quadratic functions, Polak-Ribiere has been found superior [23,29]. Also while for 

Fletcher-Reeves, the conjugate direction must be reset to that of the steepest descent 

every 3N iterations or whenever the energy between the cycles increase, Polak-

Ribiere is reset only when the energy between the cycles increase. Also according 

to Polak himself [30], the reason for his procedure is superior may be the fact that 

Polak-Ribiere method satisfies the assumptions of the Polak-Sargent-Sebastian 

theorem [32], while the Fletcher-Reeves method does not. 

 

The main advantage of the conjugant gradient methods is their ability to almost 

directly advance to the minima. This fact is illustrated in Figure 5 [23] based on the 

steepest descent’s search in Figure 4. 

 

 

 

 
 

Figure 5: The Conjugate Gradient Method 

 

 

 

In Figure 5, the search for the minimum point M is initiated at point A. After 

deducing the A-D search path, we obtain the optimal point B by means of the line 

search procedure. Even if point B can not be achieved and point D is used for 
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further search, the algorithm comes up with point E, nearer to the minimum point 

M, using the previous step’s information in contrast to that of the steepest descent 

method. Also, for quadratic functions, this method guarantees that the convergence 

to the minimum will be achieved in no more steps than the total number of position 

components [31]. This fact is also the main disadvantage of this method. The 

number of cycles will be linearly proportional to the number of atoms (N) and the 

time per cycle will be proportional to ( 2N ). 

 

2.3 Molecular Dynamics 

 

2.3.1 The Verlet Algorithm 

 

In elementary classical physics, Euler’s equations [33] are thought as basic 

equations relating the velocity, acceleration and the trajectories as: 

 

 ( ) ( )dv t
a t

dt
=  (2.26)  

 ( ) ( )dx t
v t

dt
=  (2.27) 

 

integrating these two equations yield: 

 

 ( ) ( ) ( )0 0 0.v t t v t t a t+ Δ = + Δ  (2.28) 

 ( ) ( ) ( )0 0 0.x t t x t t v t+ Δ = + Δ  (2.29) 

 

but these simple equations are handicapped when the magnitude of the error arises. 

Considering the Taylor expansion of the trajectory: 

 

 ( ) ( ) ( ) ( ) ( )2 31
0 0 0 02.x t t x t t v t t a t O t+ Δ = + Δ + Δ + Δ  (2.30) 

 

and subtracting this equation from (2.29) yields an error magnitude of 3tΔ  
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 ( ) ( )2 31
02 .t a t O t− Δ + Δ  (2.31) 

 

For small tΔ , the dominant error per step is proportional to the second power of tΔ  

which can be quite large. For this reason, Verlet algorithm is preferred for which, 

the error part in position is of the order 4. 

 

Verlet algorithm [34,35] employs the previous and the present time steps’ trajectory 

information to calculate the next time step’s. Using Taylor expansion: 

 

( ) ( ) ( ) ( ) ( )
3

2 3 4
0 0 0 0 3

1 1.
2 6

d xx t t x t t v t t a t t O t
dt

+ Δ = + Δ + Δ + Δ + Δ  (2.32) 

( ) ( ) ( ) ( ) ( )
3

2 3 4
0 0 0 0 3

1 1.
2 6

d xx t t x t t v t t a t t O t
dt

−Δ = −Δ + Δ − Δ + Δ  (2.33) 

 

adding these two equations and arranging the result yields: 

 

 ( ) ( ) ( ) ( ) ( )2 4
0 0 0 02x t t x t x t t t a t O t+ Δ = − −Δ + Δ + Δ  (2.34) 

 

thus eliminating the third-order term from the equation. As can be seen, the velocity 

information is not needed when computing the position but in order to control the 

stability of the ongoing simulation, energy conservation must be checked and for 

this we need the velocity component of the atoms. Subtracting equation (2.33) from 

equation (2.32) and dividing the result by the time step tΔ  gives us the velocity: 

 

 ( ) ( ) ( ) ( )0 0 2
0 2

x t t x t t
v t O t

t
+ Δ − −Δ

= + Δ
Δ

 (2.35) 

 

Although the velocity equation’s error magnitude is of the second order, the 

systematical calculations of the positions employed in deducing the velocities keeps 

this error from propagating, that is, resetting it in every step. 
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The problem with Eq. (2.35) lies in the generation order. We can calculate the 

velocity of time 0t  only after we have calculated the position at 0t t+ Δ . Also, the 

velocity is obtained from position information thus increasing the error propagation 

by using already derived magnitudes. To overcome the second problem, a 

procedure called the “leap-frog algorithm” is implemented in which, the velocity is 

calculated at half time steps using the acceleration information at 0t and the 

previous velocity at ( )1
0 2t t− Δ : 

 

 ( )0 0 0
1 1
2 2

v t t v t t a t t⎛ ⎞ ⎛ ⎞+ Δ = − Δ + Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (2.36) 

 

and since we have calculated the velocity explicitly, we can use that information 

whilst calculating the position: 

 

 ( ) ( )0 0 0
1 .
2

x t t x t v t t t⎛ ⎞+ Δ = + + Δ Δ⎜ ⎟
⎝ ⎠

 (2.37) 

 

As can be seen, in order to calculate the position, one needs the velocity at a time 

2
tΔ , and for the velocity, the acceleration obtained from the force acting for the 

position information at time 0t . This need/feed relation can be diagrammed as in 

Figure 6 [36]. 

 

 

 

 
 

Figure 6: Need/feed relation of the leap-frog algorithm. 
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The instantaneous velocity at a time t can be approximated by the formula: 

 

 ( ) ( ) ( )2 2 .
2

t tv t v t
v t

Δ Δ+ + −
=  (2.38) 

 

To achieve the position and the velocity information at the same time-step, an 

implementation of the Verlet algorithm called the “Velocity Verlet Algorithm” is 

devised. In this scheme, the position, velocity and the accelerations at time 0t t+ Δ  

are obtained from the same quantities at time t using the formulas: 

 

 ( ) ( ) ( ) ( ) 2
0 0 0 0

1
2

x t t x t v t t a t t+ Δ = + Δ + Δ  (2.39) 

 ( ) ( ) ( )0 0 02
1
2

tv t v t a t tΔ+ = + Δ  (2.40) 

 ( ) ( )0
0

1
x t t

a t t V
m +Δ

+ Δ = − ∇  (2.41) 

 ( ) ( ) ( )0 0 02
1
2

tv t t v t a t t tΔ+ Δ = + + + Δ Δ  (2.42) 

 

This algorithm uses 9N memory locations to save the 3N position, velocity and 

acceleration information but now we do not need to simultaneously store quantity’s 

value at two different times. Two good reviews on the subject and other methods 

can be found in the works of Ercolessi [37] and Young [36]. 

 

2.3.2 Simulation Process 

 

In the simulation, canonical ensemble molecular dynamics was used. Within this 

ensemble the number of atoms N, the volume V and the temperature T is taken to be 

constants and velocities are scaled with respect to T, to ensure that the total kinetic 

energy and hence the temperature is constant (isokinetic MD [38]). Also, the initial 

velocities are distributed using the Maxwell distribution [39]: 
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( ) ( ) 2
, , , , , ,

, , , , , ,exp
2 2

x y z x y z x y z
x y z x y z x y z

N v dv mvmf v dv dv
N kT kTπ

⎛ ⎞
= = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.43) 

 

where ( ), ,x y zf v  is the fraction of atoms that have the velocity v  for their x, y or z 

components, accordingly, k is the Boltzmann constant and ( ), ,x y zN v  is the number 

of atoms with velocity v  for their x, y or z components accordingly. The trajectories 

are calculated using the Velocity Verlet Algorithm and from these trajectories, 

average system observables are derived. All these procedures were calculated using 

Erkoç’s Molecular Dynamics Program for Cluster Simulations (md-tpc-pbc.f) [40]. 

Necessary modifications for the systems considered were implemented into the 

original code with the given consent of Erkoç himself.  

 

2.4 Electronic Structure Calculations 

 

The content of this section is summarized from Reference [41]. 

 

In order to solve the electronic Schrödinger equation  

 

 ( ), , ,
ˆ ˆ ˆ ˆ

e e k e p e e p n e e e eH H H H E− −Ψ = + + Ψ = Ψ  (2.44) 

 

where k implies the kinetic energy, p the potential energy, n the nucleus and e the 

electrons. Explicitly written form of the electronic Schrödinger equation is given by  

 

1 2 1 2

22 2
2

1 1 1 10 0

1 1 1 .
2 2 4 4i

N N M N
k

e e er
i i i k ii i k ie

Z ee E
m r r R rπε πε= ≠ = = =

⎡ ⎤
⎢ ⎥− ∇ + − Ψ = Ψ
⎢ ⎥− −⎣ ⎦
∑ ∑ ∑∑G

= G G JG G  (2.45) 

 

Some approximations and generalizations are usually applied. Among these 

generalizations, the modification of pure hypothetical wave functions is mostly 
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done as writing them in combinations of some base functions, usually defined by 

orthonormal sets. 

2.4.1 Electronic orbitals 

 

Depending on the system’s complexity and symmetry conditions, the basis sets that 

will be used as the components of the wave function (or initial guess for the self 

consistent field type iterations) are chosen. Among these are the Slater type orbitals 

which were devised to include anti-symmetric properties and the Gaussian type 

orbitals that were developed as a means of simplifying the Slater type orbitals but 

for which the matrix elements can be calculated relatively easy are the most 

commonly used orbitals. Slater type orbitals are generally given in the form 

 

 ( ) ( ) ( )
( )

( )
1 2

1
1 2, , , ,

2
,

2 !

n
n r

lmR n l mr r r e Y
n

ζ
ζ

ζ
χ χ θ φ

+
− −= =JG

G G
 (2.46) 

 

whereas the Gaussian type orbitals are defined as 

 

( ) ( )
( )

( ) ( )
( )2

2 1 4
1 1

1 2, , , , 4
2 , .

2 1 !! 2

n
n n r

lmR n l mr r r e Y
n

α
α

αχ χ θ φ
π

+
+ − −= =

−⎡ ⎤⎣ ⎦
JG

G G
 (2.47) 

 

The main difference of Eqn. (2.47) from Eqn. (2.46) is the argument of the 

exponential function containing the square (even) form of r instead of a linear (odd) 

form of r. Due to this fact, all Gaussians have a flat tangent at the side of nucleus. 

Other than these sets, plane waves are also used (mainly in Density Functional 

Theory calculations). 

 

2.4.2 The Extended Hückel semi-empirical method 

 

The extended Hückel method developed by Hoffman [42,43], takes into 

account not only the π electrons of organic molecules as the original Hückel method 

[44-46] but all orbitals, with the electronic Hamiltonian operator replaced by a 

single effective operator of form  
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 ( )
1

ˆˆ .
N

e eff
i

H h i
=

= ∑  (2.48) 

 

The single particle equations now reduce to 

 

 ˆ .eff i i ih φ ε φ=  (2.49) 

 

Assuming we have selected a set of basis functions χ  for representing wave 

functions, the Hartree-Fock-Roothaan [47] equations are defined by 

 

 
1 1

ˆ .
b bN N

p eff n nl l p n nl
n n

h c cχ χ ε χ χ
= =

=∑ ∑  (2.50) 

 

Normally, one needs to calculate the matrix elements ˆ
p eff nhχ χ  and the overlap 

matrix elements p nχ χ  explicitly. Within the Extended Hückel approach, the 

approximations 

 

 ,p n p nχ χ δ=  (2.51) 

 ( )1
2

ˆ
p eff p p ph I Aχ χ = − +  (2.52) 

 

and 

 

 ( )1
2

ˆ ˆ ˆ ,p eff n p eff p n eff n p nh K h h Oχ χ χ χ χ χ χ χ⎡ ⎤= +⎣ ⎦  (2.53) 

 

are evaluated with the Ip being the ionization potential of the isolated atom of the 

orbital pχ , Ap the electron affinity, K an empirical constant (1.75 being a preferred 

value) and ( ),p nO χ χ  being the overlap between the two functions. Once the matrix 

elements have been specified, the orbitals iφ  and their energies iε  can be 

calculated. 
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CHAPTER 3 
 

 

GENERATION OF NANOSTRUCTURES 

 

 

In a geometrical system, we can talk about two kinds of curvatures: being the 

negative and positive curvatures. To generate curvatures in honeycombed graphite 

planes, we employ pentagonal and heptagonal defects in the hexagonal cells. While 

the pentagons deform the area towards a positive curvature, the heptagons generate 

negative curvature shapes as depicted in Figure 7.  

 

 

 

 
 

Figure 7: The curvatures generated by pentagon (left side) and heptagon (right 

side) defects. 
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3.1 Cross junction 

 

A cross junction is formed by melding two carbon nanotubes by means of applying 

pressure. Using two non-interacting slabs, the tubes are pushed towards each other 

and the junction occurs. 

 

3.1.1 The system 

 

The system consists of two identical C(10,0) single walled carbon nanotubes, 

rotated 90º with respect to each other such that their azimuthal axes reside in the x 

and y directions. The two tubes are located between two carbon graphene layers. 

The overall system snapshot can be seen in Figure 8. 

 

 

 

 
 

Figure 8: The initial system snapshots. Graphene layers covering (a) all the space, 

(b) only the junction region. 

 

 

 

3.1.2 Simulation Method 

 

In the simulations, the empirical many-body Tersoff Potential Energy Function 

developed for carbon was used. Unlike Molecular Mechanics method, Tersoff 
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Potential Energy Function does not employ bond information and thus, at every 

stage of the simulation, with the absence of a bond conservation, realistic approach 

was made possible in the forming and breaking of bonds.  

 

The equations of motion of the particles were solved using the Verlet algorithm 

with NVT conditions. The temperature scaling is taken into account at every MD 

step and the temperature of the system is kept constant at 1K. The graphene layers 

were systematically moved closer to each other by 0.50Å in the first 8 phases where 

the tubes were not too close and by 0.25Å for the latter phases. In each of these 

phases, the system was relaxed for 30000 time steps and 1 time step corresponded 

to 10-16 seconds. 

 

Two simulations were run, using two different sized graphene layers. In the first 

simulation, the graphene layers’ size were taken to cover the nanotubes and with the 

periodic boundary conditions imposed upon the system, they acted as 2-dimensional 

infinite slabs.  

 

The atoms on the graphene layers were not allowed to be affected within 

themselves or by the tube atoms. Their relative positions with respect to each other 

remained fixed so that they can be seen as rigid bodies. This can be visualized as a 

concrete catalyst in actual applications made up of non- or minimal interacting 

material such as the noble elements. 

 

The main advantage of this method lies in the fact that the junction occurs in a very 

short time and it remains stable especially for mechanical strain and stress. It can be 

used efficiently in the situations where a net-like system is needed and the 

mechanical properties are more important than the electronic properties.  

 

The handicap of this method arises from the heterogeneous and random scattering 

of the atoms involved in the formation of the junction. These distortions act as 

disruptors when dealing with currents and other conductions and render the system 

unpredictable in its electronic properties.  
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3.2 Tori, helix 

 

3.2.1 Introduction 

 

After the discovery of fullerenes [48] and carbon nanotubes [1], new attempts were 

made to obtain novel carbon based systems among which are the toroidal and 

helical carbon nanostructures [49-58]. Various methods have been suggested 

theoretically to generate toroidal structures [59,61]. A nanocage structure in the 

shape of a torus may be expected to have some interesting chemical and physical 

properties due to its multi-connectivity [62,63] and its negative curve regions [64].  

 

Nanotori type structures have many potential prospects in view of electronic and 

structural applications. Addition of magnetic material inside the tori may prove to 

be useful in nano engineering applications whereas, presence of knee-regions may 

be utilized for hydrogen storage. 

 

In our study, we have chosen the Fonseca-type nanotori [61] as our base model, 

which is joined by knee regions as shown in Figure 9. The curvatures of the knee 

regions are given by the pentagon-heptagon pairs. Furthermore, at the knee regions, 

the strain is reduced. The tori constructed using this method possess 5-fold 

symmetry and are composed of armchair and zigzag type nanotubes. The curvature 

is given by pentagon-heptagon pairs facing each other lying on inner and outer rims 

of the torus. Construction of tori directly in three dimensions is a relatively difficult 

task when topologically a torus can be obtained by folding a flat sheet into a 

cylinder and then connecting the ends of the cylinder. Consequently any tiling or 

covering can be drawn on a flat sheet of paper and folded to obtain a torus surface 

covering. Fonseca have defined a unit cell on flat sheet which could be used to 

construct toroidal and helical structures. 
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Figure 9: Fonseca-type nanotori distinguished by the knee regions. 

 

 

 

3.2.2 Generation Algorithm for the Fundamental Cell 

 

The algorithm for generating Fonseca typed tori and helices consists of 4 stages. In 

the first stage, the fundamental unit cell is constructed with its symmetrical 

counterpart and then the relevant bonds are defined. In the second stage, this 

structure is optimized using molecular mechanics methods. As a result of the 

optimization, one fifth of a torus segment is obtained which is used in the third 

stage to build up the helix or the torus depending on the atoms chosen to bond with 

each other. In the fourth stage, the joined segments are optimized to form the final 

structure. 
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Figure 10: The fundamental unit cell and the definitions. For this particular cell 

A=6, B=5 and C=4. The labels of a hexagon unit are given on the bottom left 

 

 

 

The fundamental unit cell is displayed in Figure 10. In the fundamental cell, there 

are no pentagons and heptagons. We represent atom locations as an entry in matrix 

coordinate ( ),x y′ ′ . These matrix coordinates are converted into real Cartesian 

coordinates with the help of a mapping function, ( ),x y′ ′map  prior to the output 

stages. At the same time, this function also generates the symmetrical counterpart 

which is to be connected with the original cell. The symmetry is taken with respect 

to 5y B′ = +  where B determines the tube radius r . The map function assigns an 

index number to each atom it has been called for along with calculating its 

Cartesian coordinates. An atom with an index n  will have its symmetrical 

counterpart labeled as 1n + . If we designate the Cartesian coordinates by ( ),x y , 

then the primed (matrix) coordinates are converted to real coordinates by the 

transformations: 
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2
ax x′=  (2.54) 

 
( ) ( )( ) ( )

( )( ) ( )( )
2 2

2 2

mod mod 1

mod 1 mod

yy x cy y y b

x cy y y b

′⎡ ⎤′ ′ ′ ′= + − − −⎣ ⎦
⎡ ⎤′ ′ ′ ′+ − + + −⎣ ⎦

 (2.55) 

 

where ,a b  and c are the lengths described in  Figure 10, and the ( )2mod …  is the 

remainder of the parameter when divided by 2. We call the single hexagon a 

hexagon unit and label the atoms in any hexagon unit from 1 to 6 as shown in the 

bottom left of Figure 10. Practical use showed that, a 2-dimensional description of  

one fifth of a torus segment, with the proper bonds defined, does not always 

successfully optimize to a proper 3-dimensional segment, because the optimization 

method tries to fix the system in a plane. In order to prevent this, we tilt the unit 

cells (the original and its symmetric counterpart) with respect to each other by 

assigning the z coordinate of the atoms in the original cell as  

 

 .
1.5
yz =  (2.56) 

 

We start building the fundamental unit cell by constructing the hexagon units 

designated with 1 2 3 4 5 6, , , , ,M M M M M M  and 7M  as shown in Figure 10. The 

matrix coordinates of 1M are displayed in the upper right corner of Figure 10. In 

this first part, the algorithm needs three parameters to be input. The first one, A, is 

the number of hexagons between 1M  and 2M ; the second one, B, the number of  

hexagons between 1M  and 3M , including 3M ; and the last one, C, the number of 

hexagons between 1M  and 7M , including 7M . These three parameters are the only 

parameters needed to generate a torus, although as will be explained later, an 

additional parameter is needed to obtain the pitch of the helix. After these 

parameters are obtained, 1M  and 6M are located in matrix coordinates which 

determine the end points of the main (zigzag) part of the fundamental cell. To 

clarify the labeling system in the present algorithm, some examples can be given as 
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the matrix coordinates of some of the atoms in the key cells 2M  through 6M in 

Table 1. 

 

 

 

Table 1: Examples for matrix coordination. 

 

Cell Label Atom number w.r.t. the cell Matrix Coordinate ( ),x y′ ′  

2M  1 ( )2 3,0A+  

3M  5 ( ), 1B B− +  

4M  3 ( )2 4, 1A B B+ + +  

5M  5 ( )3, 2B B− + +  

6M  6 ( )2 1, 2A B B+ + +  

 

 

 

We continue building the fundamental cell by mapping 1st, 2nd and 6th atoms of 

1M  and 2M  in real space by calling the previously defined map function with the 

following parameters: 

 

 ( )map 0 2, 0x y′ ′= =…  (2.57) 

 ( )map 2 2 2 4, 0x A A y′ ′= + + =…  (2.58) 

 

where the ( )…  operator is the loop operator that iterates the value defined, starting 

from the number on the left of the operator to the number on the right with both of 

these boundaries included. The increments are evaluated by a step-size of 1. The 

mapped atoms by procedures (2.57) and (2.58) are shown in Figure 11 as the circled 

atoms. To obtain the rest of the atoms displayed in Figure 11, we use the map 

function in three loops where the first call (2.59) maps the atoms from top to the (a) 
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labeled region (including this region), the second call (2.60) maps the atoms in the 

(b) labeled region and the third call (2.61) maps the atoms in the (c) labeled region.  

 

 ( )

for 1to
for 1to 2 5

map ,
end for

end for

y B
x A

x y

′ =
′ = − +

′ ′  (2.59) 

 

To add the 3rd, 4th and the 5th atoms of 3M  and 4M  cells and the atoms in 

between we call the map function as: 

 

 ( )map 1 2 5, 1x A B′ = − + +…  (2.60) 

 

To add the 3rd, 4th and the 5th atoms of 5M  and 6M  cells and the atoms in 

between we call the map function as: 

 

 ( )map 2 2 2, 2x A B′ = + +…  (2.61) 

The zigzag part of the fundamental cell is now complete as shown in Figure 11. The 

rest of the cell (the armchair part) is constructed as follows: 
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( )

( )

( )

( )

( )

2

2

for 0 to
for 1to 1

for 2 to
2
3

map ,
end for

1
Generation of the*atoms

map ,

end for
1

map ,
Generation of the #atoms

1
map ,

end for

i C
j B

x j j
y j i
x x i

x y

y y
x y

x x
x y

x x
x y

=
= +

′ = − + −

′ = − −
′ ′= −

′ ′

′ ′= + ⎫⎪
⎬′ ′ ⎪⎭

′ ′= − ⎫
⎪′ ′ ⎪
⎬′ ′= − ⎪
⎪′ ′ ⎭

 (2.62) 

 

 

 

 
 

Figure 11: The evolution steps of the zigzag part of the fundamental unit cell. 

 

 

 

Figure 12 shows the construction steps of the armchair part. In the generation of this 

part, first the three atoms from left to right (represented by 1 in Figure 12) is 

located, then the atom labeled by (*) next to the three atoms is mapped. This 
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procedure is repeated by B times. When the bottom is reached, the two atoms 

represented by (#) is mapped. This completes one column of hexagons in the 

armchair part. This whole procedure is repeated by C times to complete all of the 

armchair part. 

 

 

 

 
 

Figure 12: Steps to generate the armchair part. 

 

At the end of this process, the atoms on both ends of the segment are recorded into 

two arrays atom1 and atom2 in specific order starting from the 2nd atom of 2M  and 

finishing at the 2nd atom of 4M for atom1 array and starting from the 6th atom of 

7M  and finishing at the 6th atom of 8M  for the atom2 array. This information will 

be used later when connecting the segments. 

 

3.2.3 Bond Generation 

 

Up to this point, the map function places the atoms such that the distance between 

two neighboring atoms is less than a, the optimum minimal second neighbor 
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distance, so that using a simple analyzer algorithm, bonds take place between the 

neighboring atoms. At this point, since all of the atoms for the torus segment are 

placed, bonds between the unit cell and its symmetrical counterpart will be 

investigated.  

 

The bond information is a crucial component in the optimization of the tori. Since 

we are arranging our atom formation in a semi 2-dimensional plane, this 

information will be used in order to obtain a 3-dimensional version. Only the atoms 

currently having two bonds on the upper and lower edges of the fundamental unit 

cell will be connected with their symmetrical counterparts to ensure the sp2 

hybridizations of the carbon atoms [65]. Some of the atoms will be connected 

directly and some of them will be connected to their counterparts with a new atom 

placed between them at the symmetry axis to conserve the graphite tiling of 

hexagons with the observed defects of pentagons and heptagons to generate the 

curvatures. The distribution of these types of bonds is made as follows: 

 

The atoms located between the 4th atom of 5M  and the 4th atom of 6M , including 

the boundary atoms, will be directly connected to their counterparts, that is, with no 

additional atom between the connected atoms. 

 

The atoms located between 1M  and 2M , having matrix coordinates in the range 

( )6,1  and ( )2 2,1A−  with boundaries included, will be also connected directly. 

This rule imposes a lower limit on A allowing only values greater than or equal to 4. 

There are no upper limits for A, B or C and B and C can take the minimum values of 

0.  

 

The bond construction for the atoms covered in the previous two paragraphs can be 

symbolically written as: 
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(For the atoms between and including the 4th atoms of 5M  and 6M ) 

 

 ( ) ( )( )
for 4 to 2 (with stepsize taken as 2)

connect atom_id , 2 ,atom_id , 2 1

end for

i B A B

i B i B

= − + +

+ + +  (2.63) 

 

(For the atoms in the range ( ) ( )6,1 , 2 2,1A−⎡ ⎤⎣ ⎦ ) 

 

 ( ) ( )( )
for 6 to 2 2(with stepsize taken as 2)

connect atom_id ,1 ,atom_id ,1 1

end for

i A

i i

= −

+  (2.64) 

 

where the function ( )atom_id ,x y′ ′  returns the id label of the atom located at the 

matrix coordinate ( ),x y′ ′  and the function ( )connect 1, 2atom atom  generates a 

bond between atom1 and atom2 and reports this bond to the Protein Data Bank [66] 

formatted output file via the “CONECT” directive [67].  

 

Other than these, all the bonds must include a middle atom which will be placed on 

the symmetry axis and in between the atoms they are connecting. Except the four 

atoms in the edges of the unit cell given by matrix coordinates ( )3 , 1 ,B C B C− − − +  

( )2 3,0 ,A+  ( )2 4 , 1 ,A B B+ + +  ( )1 3 ,C C− − , all the in between atoms will also be 

connected with their neighbor in between atoms (one neighbor connection for each).  

This process is maintained by the help of two functions, the onebond and twobond. 

Onebond function accepts the matrix coordinates of an atom as parameter and 

generates a bond with the given atom and its symmetrical counterpart with an in 

between atom. Twobond function, which consists of two onebond functions, 

accepts the matrix coordinates of two atoms and passes these atoms to onebond 

function but in addition also generates a bond between the two in between atoms of 

these two onebond generated bonds. The algorithm for this bonding process is given 

as: 
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onebond(-B-3C,B-C+1,1) 

onebond(2A+3,0,-1) 

onebond(2A+4+B,B+1,1) 

onebond(1-3C,-C,-1) 

twobond(2A+1+B,B+2,2A+3+B,B+1,1) 

twobond(-B+3,B+2,-B+1,B+1,1) 

for i = 0 to C-1 

 x1’ = -B - 3(i+1) + 1 

y1’ =  B – i 

y2’ =  B – i + 1 

x2’ = -B – 3i 

twobond(x1’,y1’,x2’,y2’,1) 

 end for 

twobond(2A+2,0,2A,1,-1) 

twobond(2,0,4,1,-1) 

 for i = 0 to C-1 

 x1’ =  1 – 3i 

y1’ = -i 

y2’ = -i - 1 

x2’ = -1 – 3i 

twobond(x1’,y1’,x2’,y2’,-1) 

 end for 

 

After this bonding process, the fundamental cell is ready to for optimization. A 

particular fundamental unit cell is presented in Figure 13, where the various types of 

bonds can be seen.  

 

After the fundamental unit cell is defined with its bonds, the system is optimized 

using the Polak-Ribiere conjugate gradient algorithm [29] with MM+ force field 

[23]. The force field includes the bond, angle, torsion, van der Waals and 

electrostatic forces. The optimization is performed in vacuo. The top-view of the 

fundamental unit cell after the optimization process is shown in Figure 14. 
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Figure 13: Completed fundamental unit cell bonded with its symmetrical 

counterpart: (a) top view, (b) tilted view. 

 

 

 

 
 

Figure 14: Optimized fundamental unit cell. 
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3.2.4 Building up the torus (or helix) from the segments 

 

Now that we have a 1/5 torus segment, we are going to copy and locate it in a 

circular fashion for the remaining 4/5 part. For the rotation information, the 

approximate center of the torus should be known in order to rotate with respect to it. 

The torus segment is thought as its symmetry axis being the z-axis so, the rotation 

will take place in the xy-plane. If we take the xy-plane located such that it splits the 

segment in two with respect to the z-axis, we can calculate the center by finding the 

intersection point of the two lines joining the two atoms that lie on the xy-plane on 

both ends of the segment. This is achieved by using the function 

intersect(x1,z1,x2,z2,x3,z3,x4,z4) where the parameters represent the Cartesian 

coordinates of the 4 atoms (the first two belonging to the atom1 array and the latter 

two belonging to the atom2 array). This function calculates the intersection point 

(intersectx, intersectz) with the formulas: 

 

 1 3 1 3
x

x x z zintersect α β
α β

+ + −
=

+
 (2.65) 

 ( )1 1z xintersect intersect x zα= − +  (2.66) 

where α  and β  are defined as: 

 

 ( )
( )

( )
( )

1 2 4 3

2 1 4 3

; .
z z z z
x x x x

α β
− −

= =
− −

 (2.67) 

 

With the intersection point known, the segment copies can now be rotated using the 

rotation formulas: 

 

( ) ( )1 1
2 2cos sin

5 5x z x
n nx x intersect z intersect intersectπ π⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.68) 

( ) ( )1 1
2 2sin cos

5 5x z z
n nz x intersect z intersect intersectπ π⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.69) 

 

where n denotes the number of the copied segment starting from 1 with a total of 5. 

After this, we have the segments placed to make up the torus, ready to be bonded 
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with each other. Depending on the type of the bonding, we will have a torus or a 

helix. Prior to the bonding process, we shall define a new array allatoms[] which 

stores all the atoms positions. the number of rows of this array is taken to be N 

where the total number of atoms in a segment equals to N/5. Also we will denote 

the number of rows in atom1 (or atom2) array by t, that is the total number of atoms 

that will bond with the corresponding atoms in the subsequent segment. 

 

3.2.4.1 Bonding algorithm for tori 

 

As defined previously, atom1 holds the list for the atoms located on one end (i.e., 

zigzag end) that will bond to the other segment’s atoms located on the other end 

(i.e., armchair end). Since we have 5 segments and t atom pairs that will be 

connected, we iterate the connect function over these values as: 

 

for i = 0 to t-1 

 for j = 0 to 4 

  connect (atom1[t]+j*N/5, atom2[t] + (j+1)%5 * N/5) 

 end for 

end for 

 

This way, the jth segment’s atom1 atoms are bonded with the (j+1)th segment’s 

atom2 atoms while, its atom2 atoms are bonded with the (j-1)th segment’s atom1 

atoms. The remainder operator ‘%’ is used for the continous inclusion of bonding 

between the original (0th) segment’s atom2 atoms and the last copied (4th) 

segment’s atom1 atoms. 

 

3.2.4.2 Bonding algorithm for helix 

 

The bonding algorithm for helix is very similar to that of the torus but, this time, the 

order of the bonding atoms are shifted by a value h which we will call the helicity. 

While bonding, the ith atom of the jth segment’s atom1 array is bonded not with the 

ith atom of the ((j+1)%5)th segment’s atom2 array but with the (i+h)th atom of the 
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((j+1)%5)th segment’s atom2. It can be immediately observed that taking h as 0 or 

any integer times t will result in a torus. A helix generated using this algorithm is 

presented in Figure 15. 

 

 

 

 
 

Figure 15: (a) Top, (b) and (c) side views of a completed helix. The parameters for 

this particular helix are: A=5, B=4, C=1 and h=1. 

 

 

 

3.2.5 Final Optimization and the results 

 

Now that the fundamental unit cell is generated, the bonds between its atoms are 

defined, it is optimized, reproduced 4 times and the copy segments are located, 

bonds generated between the original one and the copies themselves, the system 

(whether a torus or a helix) is ready to a final optimization procedure. 

 

This final optimization takes relatively less computation time because of the 

alignment of the segments and the segments’ already optimized configurations. It is 

once again done using MM+ force field with the Polak-Ribiere conjugation gradient 

algorithm. Because of the non-uniform shape of the typical Fonseca type tori, the 

inner radius r and outer radius R can only be defined arbitrarily. Also, any definite 

formula relating the input parameters and the two radii will inevitably fail because 



 40

of the optimization procedures following. A choice for the definition of the radii is 

presented in Figure 16. The input parameters A, B and C are approximately related 

with r and R as follows: 

 

 ( ) ( ) ( )2 21 x zR c B intersect x intersect z′ ′≈ + + − + −  (2.70) 

 ( )2 4
.

B
r c

π
+

≈  (2.71) 

 

where c is defined as the distance between the 2nd and 3rd atoms in the hexagonal 

unit cell as shown in Figure 10, x′  and z′  being the x and z coordinates of the 3rd 

atom of 2M .  

 

 

 
 

Figure 16: Geometrical definitions of r and R. 

 

 

 

In the present algorithm to generate any toroidal or helical structure, one needs to 

define only the parameters A, B and C which determine R and r. For a fixed R, when 

the radius of the zigzag part is defined, the corresponding armchair part is 
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automatically generated. This makes it possible to generate a torus with any inner 

radius r, as long as r is a regular zigzag tubule radius ( )/ 2r aB π∝ . 

 

3.3 Nanogears and arbitrary nanojunctions 

 

3.3.1 Introduction 

 

Shortly after their discovery, carbon nanotubes have found many application fields 

from quantum computers [68-70] to nanomotors [71,72]. Although most of these 

applications are, at the time, hypothetical and at most simulations, the new 

technologies and application techniques are rapidly being developed. Nanojunctions 

play a fundamental role in the construction of these systems. A method for 

generating nanojunctions has been developed by Zsoldos et al. [73,74]. This article, 

being a trailblazer in many respects, yet limited itself to two base nanotubes C(3,3) 

and C(6,0). In section 3.7 of their article, they give an example of a tetrahedral 

junction having a larger diameter than the previously mentioned ones and report 

that: 

 

(…) in order to construct tubes having larger diameters it is 
necessary to increase the number of hexagons in the 
hexagonal rings of the tubes. At the same time hexagons 
have to be placed among the heptagons in the heptagonal 
ring and among the pentagons in the pentagonal 
hemispherical formations too. [73] 

 
In this work, an algorithm that can be used to develop systematical and general 

methods in order to produce any such junctions and gear like systems is devised. 

Although the generated tiles will be, in general, different than those of Zsoldos et 

al.’s, they can be employed in the same way as the ones developed in Ref. [73] and 

thus can be used to form a nanojunction made up of any desired zigzag and 

armchair nanotubes. 
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3.3.2 Algorithm, Definitions and Rules 

 

Consider a nanojunction consisting of three nanotubes that are C(9,0), C(6,6) and 

C(17,0) as shown in various angles in Figure 17. This system can be thought of a 

fold graphite including two protuberances that will form the C(9,0) and the C(6,6) 

nanotubes in capped form when geometry optimized with respect to the energy as 

shown in Figure 18. The forming of the graphite layer such that A with A’ and B 

with B’ intercept each other will make up the C(17,0) nanotube. 

 

 

 

 
 

Figure 17: X- junction made of C(17,0), C(9,0) and C(6,6). 
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Figure 18: Unfolded C(17,0) and protuberances for C(6,6) (left) and C(9,0) (right). 

 

 

 

The main challenge in this phase is the determination of the area that the 

protuberance of the nanotube to be constructed. To start with, we may assume these 

three rules to find the optimum dimensions of the area: 

 

i. The ‘perimeter’, defined as the number of the hexagons that forms 

the outermost ring of the protuberance, must be equal to n+m for an 

(n,m) nanotube (it must be kept in mind that, we are only dealing 

with zigzag (n,0) and armchair (n,n) nanotubes) so that an (n,m) 

nanotube can be connected to this ring without outruling the sp2 

bonding of the carbon atoms. 

ii. When going down one row in graphite, the number of hexagons the 

preceding row contains can be only one more or one less than the 

next row for the consistency of the shape. 
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iii. The shape of the protuberance’s covered space in the graphite must 

be symmetrical, actually being equal to a circle in the limit so that, 

when a nanotube is formed from the protuberance, it will be as 

smooth as possible. If we make an analogy with a mapping of the 

hexagonal graphite to Cartesian space, the hexagonal space will 

become a rectangle, its diameter being proportional to n+m. As it is 

known from differential geometry, the maximal symmetry of a 

rectangle is achieved when the sides are equal to each other, i.e., 

when we have a square. This is the answer to the differential problem 

in which we are given the sum of the two sides a and b of a rectangle 

and asked for the exact values of the sides if the area of the rectangle 

is to be maximized. Alas, in our plane of hexagons with 1ê  and 2ê  

being the base vectors of the system with an angle of 30º between, 

we do not posses the option to take fractional factors of these base 

vectors, so we have to approach the maximum symmetry as we are 

allowed.  

 

The algorithm for finding such a geometry can be proposed as follows: 

 

Let G(n,m) be the geometry for a protuberance that yields an (n,m) carbon 

nanotube. Examples for various G(n,m) values are presented in Figure 19 (Although 

they are shapes in 2-dimension before the optimization process, they can also be 

viewed as Schegel diagrams for the cause). We then define the notation [o0- o1- o2- 

…- ok- ok+1] with oi ( ), 0i i∈ ≥]  representing the number of hexagons in the ith row 

before any modifications, i.e., addition of heptagons and pentagons, are made. The 

notation {oi} will imply the series in general. Additional approaches to the 

protuberances can be found in An et al.’s [75] and Beuneu’s [76] articles in which 

the protuberances are named as ‘embryos’. 
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Figure 19: Various protuberances. 

 

 

 

From basic geometric properties and using the ith rule, one can derive Table 2. Lk  is 

the limit value after which, the symmetric k values begin to occur. So, it will be 

sufficient to search up to Lk . An optimized diagram given in Figure 20 equivalent 

to Table 2 can be constructed. 
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Table 2: k values. 

 

n k kL=(n-o0) / 2 k =  

integer, even kL - 2 

fractional, 

ip(kL) even 

integer part of 

kL 

integer, odd kL - 1 
odd even 

fractional, 

ip(kL) odd 

integer part of 

kL - 1 

integer, even kL - 1 

fractional, 

ip(kL) even 

integer part of 

kL - 1 

integer, odd kL - 2 
even odd 

fractional, 

ip(kL) odd 

integer part of 

kL 

 

 

 

 

 

Figure 20: Table 2’s optimized diagram. 
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Knowing k, ok+1 is obtained by 

 

 ( )1 02ko n k o+ = − +  (2.72) 

 

Now that we have k and ok+1, we can construct the series. Let k+ and k- be the 

number of steps that increment and decrement o0 respectively. Using the formulas 

 

 1k k k+ = ++ −  (2.73) 

 1 0ko o k k+ + −− = −  (2.74) 

 

we can now derive k+ and k- as follows: 

 

 
1 0 1
2

1

kk o ok

k k k

+
+

− +

+ − +
=

= − +
 (2.75) 

 

To acquire the maximum area, successive increments and decrements should be 

applied in order. 

 

Now that we have an algorithm that calculates the series, we can iterate over the o0 

parameters for a given (fixed) n and by comparing the ‘areas’ of these series, 

maximum symmetrical series can be chosen. The simple flowchart for the selection 

of the maximum area series is given in Figure 21. Also, it must be kept in mind that 

the algorithm presented in Table 2 and Figure 21 gives the highest k for which the 

ith and iind statements are satisfied. If we take the oi series for protuberance (17,0) 

with o0 = 4 for example, the algorithm will yield 6 for k and 1 for ok+1 from which 

the constructed oi series will be [4-5-6-5-4-3-2-1] whose perimeter is equal to 17 

(n+m) and which increases/decreases by 1 for each row. So, the area and series 

calculation operation box in Figure 21 also checks for consecutive allowed k valued 

series which follows the rules 

 

 
1 1

2
4k k

k k
o o+ +

= −
= +

 (2.76) 
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so that the series that occupies more area ([4-5-6-7-6-5]  in this case) is selected. 

Generally the first candidate has the largest area. Between G(6,0) and G(26,0) 

exceptions to this generalization were: n = 17, 20, 21, 23, 24, 25 and 26. Two 

alternative and ad-hoc methods deduced solely from Table 3 and Table 4 are 

presented in Appendix A. 

 

 

 

 
 

Figure 21: Flowchart for obtaining the maximum area yielding series for a given n. 

 

 

 

Having acquired the proper, as symmetric as possible space, we can start filling up 

the protuberance by pentagons, hexagons and heptagons to form the geometry we 
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need. We start by adding “half-lines” to the inner vertices of the hexagons in the 

outermost rim of the protuberance. The direction of these half-lines must be chosen 

such that they form an angle of approximately 120º with respect to the two sides 

forming the vertex. In the second step, we connect these lines with the nearest two 

with a bent line: if we are dealing with zigzag protuberances, then the corner 

hexagons, else if we are dealing with armchair protuberances, the hexagons in the 

centers of the sides will be transformed to heptagons. Two examples for the 

evolution of two protuberances, one zigzag and one armchair, are given in Figure 

22, the second column covering the process described above. 

 
 

Figure 22: Evolution of protuberances G(12,0) and G(8,8). 

 

 

 

At this stage, we have enough information to define the pi series {p0:p1-p2:p3-

p4:p5}as the number of hexagons between the corners going from top to bottom, left 

to right as shown in Figure 23. The relation between oi and pi is given as: 

 

 
( )
( ) ( )

( )

0 0

1 2 0

3 4 max

5 max

2
max 1

max 1

2

i

i i

i

p o
p p o o

p p o o

p o

= −

= = − −

= = − −

= −

 (2.77) 
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Notice that, as a result of incrementing/decrementing the number of hexagons 

allowed in the subsequent rows by 1 hexagon at a time, 1 2p p=  and 3 4p p= . If we 

have two adjacent heptagons, then the corresponding p value would be 0. 

 

 
 

Figure 23: G(17,0) with {2:2-2:1-1:3}. 

 

 

 

To hold up the Euler’s rule [77] for regular shapes, the number of pentagons used 

must be equal to the number of heptagons.  

 

3.3.2.1 Method for constructing zigzag tube yielding protuberances G(n,0) 

 

If (p0, p1, p2) set is formed by all even (excluding 0) numbers and (p3, p4, p5) set is 

formed by all odd numbers, and vice versa, the zig-zag protuberance will be 

mentioned as ‘pure’. 
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i. If there are adjacent heptagons, a pentagon must be placed between 

them in the next rim. 

ii. If pi is odd and the protuberance is not a ‘pure’ one, then a pentagon 

must be placed next to the hexagons in the middle (located on the first 

rim) in the second rim. If it is a ‘pure’ one, then place two pentagons 

corresponding to p1 and p2, next to the hexagons in the middle (located 

on the first rim) in the second rim, but place the pentagon for p0 next to 

the hexagons in the middle (located on the third rim) in the fourth rim. 

iii. If pi is even, then a pentagon must be placed next to the hexagons in the 

middle (located on the second rim) in the third rim. 

iv. After the placement of the heptagons and octagons, the remaining space 

is filled by hexagons. 

 

While investigating the structures for a general formula, we have come up with a 

chart as given in Table 3. 

 

In the table, rim occupation lists the total number of polygons, i.e. hexagons, 

pentagons and heptagons – with the number of pentagons occurring in that 

particular rim is given in parentheses. As can be verified from the pi column, 

G(7,0), G(17,0), G(19,0), G(23,0), G(25,0) are pure protuberances in this manner. 

 

Using basic geometric principles, we can derive the number of polygons in a rim 

from prior rims’ line-up information. Also, we have the condition that the 

protuberance contains 6 heptagons in its first rim. Summarizing the information so 

far, a method for deriving the number and the positions of all the polygons in a rim 

is given below: 

 

The total number of polygons in the first rim equals to n with 6 of these being 

heptagons placed in the corners. The total number of polygons in any rim other than 

the first one is equal to the number of polygons in the previous rim minus the total 

number of pentagons so far placed. This goes on until the calculated polygon total 

reaches 0 in which case it is treated as one; or the total number of polygons 
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calculated for the rim is negative in which case it is omitted and the rims are 

concluded. 

 

 

Table 3: Geometric properties of zigzag yielding protuberances G(n,0). 

 

G(n,0) {oi} {pi} rim occupation # of rims

G(6,0) 2-3-2 0:0-0:0-0:0 6-6(6)-1 3 

G(7,0) 1-2-3-2 -1:1-1:0-0:07-8(6)-2(1) 3 

G(8,0) 3-4-3 1:0-0:0-0:1 8-8(4)-4(2) 3 

G(9,0) 2-3-4-3 0:1-1:0-0:1 9-9(3)-6(3)-1 4 

G(10,0) 2-3-4-3-2 0:1-1:1-1:0 10-10(2)-8(4)-2 4 

G(11,0) 3-4-5-4 1:1-1:0-0:2 11-11(2)-9(3)-4(1) 4 

G(12,0) 3-4-5-4-3 1:1-1:1-1:1 12-12-12(6)-6-1 5 

G(13,0) 2-3-4-5-4-3 0:2-2:1-1:1 13-13(1)-12(3)-8(2)-2 5 

G(14,0) 4-5-6-5-4 2:1-1:1-1:2 14-14-14(4)-10(2)-4 5 

G(15,0) 3-4-5-6-5-4 1:2-2:1-1:2 15-15-15(3)-12(3)-6-1 6 

G(16,0) 3-4-5-6-5-4-3 1:2-2:2-2:1 16-16-16(2)-14(4)-8-2 6 

G(17,0) 4-5-6-7-6-5 2:2-2:1-1:3 17-17-17(2)-15(3)-10(1)-4 6 

G(18,0) 4-5-6-7-6-5-4 2:2-2:2-2:2 18-18-18-18(6)-12-6-1 7 

G(19,0) 3-4-5-6-7-6-5-4 3:3-3:2-2:2 19-19-19(2)-17(3)-12(1)-6-1 7 

G(20,0) 5-6-7-8-7-6-5 3:2-2:2-2:3 20-20-20(2)-18(4)-12-6-1 7 

G(21,0) 4-5-6-7-8-7-6-5 2:3-3:2-2:3 21-21-21(3)-18(3)-12-6-1 7 

G(22,0) 4-5-6-7-8-7-6-5-4 2:3-3:3:3-2 22-22-22(4)-18(2)-12-6-1 7 

G(23,0) 5-6-7-8-9-8-7-6 3:3-3:2-2:4 23-23-23(2)-21(3)-16(1)-10-4 7 

G(24,0) 5-6-7-8-9-8-7-6-5 3:3-3:3-3:3 24-24-24(6)-18-12-6-1 7 

G(25,0) 4-5-6-7-8-9-8-7-6-52:4-4:3-3:3 25-25-25(2)-23(3)-18(1)-12-6-1 8 

G(26,0) 6-7-8-9-10-9-8-7-6 4:3-3:3-3:4 26-26-26(4)-22(2)-16-10-4 7 

 

 

 

For every pi that is equal to 0, a pentagon is placed in the second rim, between the 

adjacent heptagons corresponding to that pi side. If the protuberance is not a pure 
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one, then the total number of the pentagons in the third rim is equal to the number 

of odd  pi , else if the protuberance is a pure one, then the total number of pentagons 

in the third rim is equal to the number of  odd pi minus 1. A number of pentagons 

that is equal to the number of even pi are placed in the fourth rim and if the 

protuberance is pure, then another pentagon is placed in the fifth rim. All these 

pentagons are positioned in the centers of the sides that are parallel to pi lines such 

as the ones shown in Figure 23 for the G(17,0) protuberance. 

3.3.2.2 Method for constructing armchair yielding protuberances G(n,n) 

 

For G(n,n) protuberances, similar techniques are employed but the method differs 

itself in the positions of the heptagons. In contrast to G(n,0), the heptagons are 

places not in the corners but, as close as possible to the centers of the sides. The two 

corners occurring in { }( )max io  are always hexagons but in some cases, when there 

is nowhere else, the corners of 0o  and ( )max io  can also be filled with heptagons. Two 

examples for this can be found in Figure 24, being the G(4,4) and G(5,5). The { }io  

series for a G(n,n) protuberance is equal to that of a G(2n,0) protuberance’s series. 

Also, note that, any armchair protuberance will always be symmetric along the 

horizontal axis which is taken as the imaginary line connecting the two hexagons’ 

centers placed on the edges of { }( )max io  because of the equity to the { }io  series of 

a 2n zigzag protuberance. 

 

 

 

 
 

Figure 24: Examples of G(n,n) protuberances. (a) G(4,4); (b) G(5,5); (c) G(11,11); 

(d) G(12,12); (e) G(13,13). 
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The ‘pureness’ situation encountered in the zigzag protuberances G(n,0) has a 

similar counterpart for G(n,n): if n is even, then 1o  will be odd and the right side 

will be a mirror image of the left side with respect to the vertical axis which is taken 

as the imaginary line connecting the centers of 1o  and ( )max io . But in the case of an 

odd n, 0o  will be even and the protuberance space will be that of n+1 case with 

{ }io  series of the G(n+1, n+1) decreased by 1 each. Let us call the first case with n 

even ‘pure’ and the other ‘impure’. For an impure protuberance, the heptagons 

placed for p1 and p2 should be on the same oi row and they must be placed into the 

centers of the p1 and p2 for the odd p1 and p2 and for even p1 and p2, the hexagon 

closer to { }( )max io  must be transformed into a heptagon. Similar procedure should 

be employed for p3 and p4. Because of the vertical symmetry, the heptagons for p0 

and p5 can be placed in either of the hexagons in the middle f the top and bottom 

row as long as p0 and p5 ‘s heptagons are in the same column, i.e. mirror imaging 

each other by means of horizontal symmetry. In our work the one to the left has 

been preferred for the purpose but this is not mandatory. The positions of the 

heptagons are as follows: 

 

i. p0 heptagon will be placed into the ( )0 02 % 2 2.p p+ +⎡ ⎤⎣ ⎦  hexagon 

to the left, numbering the upper-left hexagon as the 1st. 

ii. p1 heptagon will be placed into the ( )1 02 % 2 2.p p+ +⎡ ⎤⎣ ⎦  hexagon 

to the left, numbering the upper-left hexagon as the 1st. 

iii. p2 heptagon will be placed in the same oi row with the p1 heptagon. 

iv. p3, p4 and p5 heptagons will be the mirror images of p1, p2 and p0 

heptagons, repectively, with respect to { }( )max io  row. 

 

In the equations above, the ‘%’ operator is the remainder operator, i.e. (odd 

number)%2 = 1, (even number)%2 = 0. 

 

Generation of the G(n,n) protuberances is fairly easy when compared to G(n,0) 

protuberances. The pentagons are always placed in the second rim and they are 

positioned adjacent to the heptagons. As a result of alternating series in valley-hill 
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sequence, a pentagon-heptagon intersecting side will be designated as the one 

before it if there are odd number of hexagons between the two related heptagons in 

the first rim, and will be designated as the opposite designation of the one before it 

if there are even number of hexagons in between. 

 

For a G(n,n) protuberance, the total number of the polygons in the first rim is equal 

to 2n with 6 of these being heptagons. The second rim also has the same number of 

polygons as the first rim, being 2n with the 6 heptagons replaced by 6 pentagons. 

The inner rims follows exactly the same way as G(n,0) protuberances and 

terminates just like them and they may only contain hexagons. A table for the 

properties of some of these protuberances is given in Table 4. 

 

 

 

Table 4: Geometric properties of armchair yielding protuberances G(n,n). 

 

G(n,n) {oi} {pi} rim occupation # of rims

G(4,4) 3-4-3 1:0-0:0-0:18-8(6)-2 3 

G(5,5) 2-3-4-3-2 0:1-1:1-1:010-10(6)-4 3 

G(6,6) 3-4-5-4-3 1:1-1:1-1:112-12(6)-6-1 4 

G(7,7) 4-5-6-5-4 2:1-1:1-1:214-14(6)-8-2 4 

G(8,8) 3-4-5-6-5-4-3 1:2-2:2-2:116-16(6)-10-4 4 

G(9,9) 4-5-6-7-6-5-4 2:2-2:2-2:218-18(6)-12-6-1 5 

G(10,10) 5-6-7-8-7-6-5 3:2-2:2-2:320-20(6)-14-8-2 5 

G(11,11) 4-5-6-7-8-7-6-5-4 2:3-3:3:3-222-22(6)-16-10-4 5 

G(12,12) 5-6-7-8-9-8-7-6-5 3:3-3:3-3:324-24(6)-18-12-6-1 6 

G(13,13) 6-7-8-9-10-9-8-7-6 4:3-3:3-3:426-26(6)-20-14-8-2 6 

G(14,14) 5-6-7-8-9-10-9-8-7-6-53:4-4:4-4:328-28(6)-22-16-10-4 6 

 

 

 

After filling up the protuberance space as defined above, we have to designate the 

‘path’ of the nanotube contained within the protuberance. The practical way to do 
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this is to begin from the uppermost pentagon-heptagon intersection. Label this line 

as ‘V’ for ‘valley’ or ‘H’ for ‘hill’. Although it may come out later that, it is –for 

example– a hill instead of a valley, the designation of the type is important only in 

distinguishing one type from the other. So, you can as well designate the two types 

as ‘A’ and ‘B’ instead of ‘V’ and ‘H’ as we have done. Once you have signed the 

uppermost line, try to reach the nearest pentagon-heptagon pair using steps such as 

a  or , that increases-goes flat-decreases (or vice versa) in a direction so 

that they always have a minima or a maxima but never a , which is like a saddle 

point. If you can not reach the next junction line, then treat the starting line as the 

opposite type. Some protuberances (like G(5,5), G(8,8), G(11,11), G(14,14)) are 

found to comply with the uppermost junction line being a  step, some 

protuberances (like G(4,4), G(7,7), G(9,9), G(13,13)) found to comply with the 

uppermost junction line being a  step, while some (like G(6,6), G(10,10), 

G(12,12)) complied with both ways. Although there may be a relation between this 

behavior and the n, it could not be derived. For this reason, at this point, the 

systematic method works as a trial and error method with two options. Figure 24 

shows the possible trailing –thus cut-off– lines for nanotube joints. 

 

3.3.3 Flowcharts 

 

In order to aid in computer programming, the processes for the generation of 

protuberances are summarized in the following flowcharts in Figure 25 through 

Figure 29: 

 

 

 



 57

 
 

Figure 25: Flowchart to generate protuberances (part I). 

 

 

 

figure 21
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Figure 26: Flowchart to generate protuberances (part II). The zigzag protuberance 

generator (1/2). 
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Figure 27: Flowchart to generate protuberances (part II). The zigzag protuberance 

generator (2/2). 
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Figure 28: Flowchart to generate protuberances (part II). The armchair 

protuberance generator (1/2). 



 61

 
 

Figure 29: Flowchart to generate protuberances (part II). The armchair 

protuberance generator (2/2). 
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3.3.4 Various Applications of Protuberances 

 

With protuberances at hand, one can form various systems including nanogears, 

nanojunctions, toothed canals as given in Figure 30 and Figure 31. It is also possible 

to join any nanotube to another by replacing appropriate (corresponding to the other 

tube’s { }io  series) hexagons from the tube with the protuberance corresponding to 

the tube that will be joined, and then cutting up the ‘cape section’ of the 

protuberance and growing it into a tube with desired length. Also nanojunctions 

involving many different diameters and different chirality-valued tubes can be 

formed easily like the example given in Figure 17. 

 

 

 

 
 

Figure 30: 3, 4, 5 and 6 toothed nanogears formed using G(4,4) with their junction 

counterparts with the top of the protuberances cut-off and joined to C(4,4) 

nanotubes. 
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Figure 31: Various views of a toothed canal system. 

 

 

 

 
 

Figure 32: Formation of a junction point using two G(12,12) and then adding 

G(4,4) and G(12,0) . Next, C(4,4) is connected to G(4,4) and G(6,0) is connected to 

G(12,0). 
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 CHAPTER 4  
 

 

STRUCTURAL PROPERTIES OF THE NANOSYSTEMS 

STUDIED 

 

 

Analysis of the systems produced in the previously described ways were conducted 

in three methods: The junction formation between two nanogears forced to intersect 

with each other was tested using molecular dynamics simulations. The nanotori and 

nanogears systems were firstly inspected for their temperature threshold in which 

they can no longer maintain their stability and bond-breakings begin to take place. 

For the case of nanogears, additional stability tests were applied under periodic 

boundary conditions which ensured that the pivot regions of the nanogears were 

connected to infinitely many other nanogears’ pivot regions in a repeating way. 

Then, rough orbital information using the Extended Hückel method was obtained. 

Among this orbital information, the total energy of the system and the HOMO-

LUMO energy levels were presented.  

 

4.1 Molecular Dynamics Simulations 

 

4.1.1 Junction Formation 

 

After the system described in Section 2.1 was simulated with the methods and 

procedures described, they were observed to form a junction which was 

heterogeneous. The development snapshots of the two versions of the system – one 

with the graphene layers covering only the junction area while in the other, the 
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graphene layers cover the whole system – are given in Figure 33 and Figure 34, 

respectively. 

 
 

Figure 33: The development snapshots of the cross junction with the graphene 

layers covering only the junction area. 
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Figure 34: The development snapshots of the cross junction with the graphene 

layers covering the whole system. 

 

 

 

4.1.2 Stability Tests 

 

The generated structures are run for stability tests in various temperatures to obtain 

the decomposition behavior and determine the limit temperature in which the break 

down happens. All of the simulations were conducted using the Tersoff potential, 

NVT conditions regarded per run, with the temperature gradually increasing by 100 

K at each run. One time step was taken to be 10-16 second and at each run a 
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relaxation with 50000 time steps were performed. The simulation processes are 

summarized in Table 5 with the original systems’ formation and their forms before 

and just after the deformation are presented through Figures 36-40 and 42-49. 

Deformation temperature may also be determined by looking at the variation of the 

total potential energy vs. temperature. Such a energy vs. temperature variation for 

the nanogears C240 and C252 is shown in Figure 35. Similar behavior is observed 

from the other models.  

 

 

 
Figure 35: Energy vs. Temperature graph for C240 and C252. 
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Table 5: The temperature thresholds for various carbon nanosystems. 

 

System: Deformation Temperature 

Nanotorus: C170 3700 K 

Nanotorus: C250 3000 K 

Nanotorus: C360 4500 K 

Nanotorus: C520 4200 K 

Nanotorus: C750 4100 K 

3 toothed armchair nanogear: C240 2800 K 

3 toothed zigzag nanogear: C252 3100 K 

4 toothed armchair nanogear: C320 2600 K 

4 toothed zigzag nanogear: C336 3200 K 

5 toothed armchair nanogear: C400 2400 K 

5 toothed zigzag nanogear: C420 2900 K 

6 toothed armchair nanogear: C480 1700 K 

6 toothed zigzag nanogear: C504 1200 K 

 

 

 

4.1.2.1 Carbon Nanotori 

 

Among the nanotori considered, C170 is the smallest possible toroidal structure that 

can be generated with the algorithm used. The remaining 4 tori are selected by 

increasing r and R defined in Figure 16. The stability of the toroidal structures 

against heat treatment shows a complex dependence on geometrical parameters. 

 

Figure 36 shows the evolution of the C170 nanotorus. This nanotorus has almost 

circular appearance from its top view. The five-fold symmetry is not as apparent as 

others. It deformed at about 3700 K. The nanotorus has not distorted much until the 
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deformation temperature at which, it became distorted significantly and the 

deformation started at a knee region.  

 

 

 

 
 

Figure 36: C170 (a) Relaxed structure at 1 K, (b) at 3600 K, (c) at 3700 K where the 

structure deforms. 

 

 

 

C250 is shown in Figure 37. Pentagon-like geometry can be seen in the inner region. 

Although there is very little difference in r, R is changed considerably when 

compared to C170. Geometry was not distorted much up to the deformation 

temperature at about 3000 K. C250 also starts to deform at a knee region. 
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Figure 37: C250 (a) Relaxed structure at 1 K, (b) at 2900 K, (c) at 3000 K where the 

structure deforms. 

 

 

 

The inner region geometry of C360 also resembles a pentagon but more round when 

compared to C250 as can be seen in Figure 38. Overall geometry was somewhat 

distorted when exposed to heat. This nanotorus persisted up to 4500 K, which is the 

highest temperature endured among the nanotori considered. It is interesting to note 

that this nanotorus deformed at a location away from the knee regions, unlike the 

other nanotori that were considered in this work.  

 

 

 

 
 

Figure 38: C360 (a) Relaxed structure at 1 K, (b) at 4400 K, (c) at 4500 K where the 

structure deforms. 
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/R r  ratio for the nanotori C520 is the lowest among all the models considered. This 

can be observed in Figure 39. Inner region has circular geometry where the five fold 

symmetry is not apparent, whereas the five fold symmetry in the outer region is 

clearer. This nanotorus deformed at about 4200 K. Inner geometry became distorted 

when exposed to heat. This nanotorus also began its deformation at a knee region. 

 

 

 

 
 

Figure 39: C520 (a) Relaxed structure at 1 K, (b) at 4100 K, (c) at 4200 K where the 

structure deforms. 

 

 

 

C750 is the largest nanotorus considered in this work. It has a pentagon-like inner 

geometry that can be observed from Figure 40. This nanotorus deformed at about 

4100 K at a knee region. 
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Figure 40: C750 (a) Relaxed structure at 1 K, (b) at 4000 K, (c) at 4100 K where the 

structure deforms. 

 

 

 

In a similar work [78], thermal stability of nanotori with different geometry 

(different locations of pentagons and heptagons) but similar sizes has been 

investigated. In that work, C120 nanotorus was found to deform at about 4600 K 

with a little bit of distortion in the structure before the deformation temperature. 

Two different isomers of C240 had deformation temperatures of 4100 K and 5400 K. 

It may be argued that the smooth geometry of these nanotori have increased the 

thermal stability considerably, since strain due to curvature is distributed along the 

whole structure, and not concentrated at the knee regions as in the present case. 

 

Overall, all the nanotori considered in this work are found to be thermally stable up 

to the elevated temperatures. The thermal stability of the nanotori considered has a 

complex dependence on geometrical parameters, as noted earlier. The variation of 

deformation temperature with respect to /R r  is plotted in Figure 41. 
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Figure 41:Dependence of the deformation temperature on R/r. 

 

 

 

Considering the dependency, C360 is seen to be an exception, possibly due to the 

fact that the deformation location is away from the knee regions. It may be argued 

that this nanotorus satisfies some magic condition that increases the thermal 

stability of knee regions considerably. Deformation temperatures of nanotori 

considered are comparable with those of the carbon nanotubes and nanorods of 

similar cross section radius [79,80]. 

 

4.1.2.2 Carbon Nanogears 

 

8 types of nanogears (4 being armchair yielding and 4 being zigzag yielding) were 

tested against increasing temperature. The armchair yielding ones were a 3-toothed 

nanogear with a C(9,0) nanotube acting as the pivot (total number of atoms in the 

system is 240); a 4-toothed nanogear with a C(12,0) pivot (total number of atoms in 

the system is 320); a 5-toothed nanogear with a C(15,0) pivot  (total number of 
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atoms in the system is 400) and a 6-toothed nanogear with a C(18,0) pivot (total 

number of atoms in the system is 384). The corresponding values for the zigzag 

yielding nanogears are: a 3-toothed nanogear with a C(12,0) acting as the pivot 

(total number of atoms in the system is 252); a 4-toothed nanogear with a C(16,0) 

acting as the pivot (total number of atoms in the system is 336); a 5-toothed 

nanogear with a C(20,0) acting as the pivot (total number of atoms in the system is 

420); a 6-toothed nanogear with a C(24,0) acting as the pivot (total number of 

atoms in the system is 504); The gear parts were made from G(4,4) protuberances 

for armchair yielding nanogears and from G(8,0) protuberances for zigzag yielding 

nanogears. The evolutions of the systems with respect to the increasing temperature 

were as follows: 

 

3-toothed armchair nanogear was the longest lasting nanogear among the 4 

armchair systems tried. The system’s break down occurred at 2800 K. Until this 

temperature, the system vibrated but no new bonds formed and it was always 

possible to restore to the original form by means of optimization or a similar 

process like the cooling part of a stimulated annealing. System’s snapshots at 1 K, 

2700 K and 2800 K can be seen in Figure 42. 

 

 

 

 
 

Figure 42: C240 (a) Relaxed structure at 1 K, (b) at 2700 K, (c) at 2800 K where the 

structure deforms. 
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4-toothed armchair nanogear imploded upon itself and then went unstable at 2600 

K. The implosion began at 2300 K. At 2800 K bond breaking and atom separation 

started. Unlike the 3-toothed armchair nanogear, the deformed shape did not 

resemble its original form with the parabolic shaped regions between the teeth 

smoothed and gave way to valleys. This behavior can be observed in Figure 43. 

 

 

 

 
Figure 43: C320 (a) Relaxed structure at 1 K, (b) at 2700 K, (c) at 2800 K where the 

structure deforms. 

 

 

 

5-toothed armchair nanogear retained its form but it imploded in the pivot acting 

nanotube region at 2400 K. Until that temperature, it retained its original form and 

the slight deformations were totally reversible as can be checked in Figure 44. 
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Figure 44: C400 (a) Relaxed structure at 1 K, (b) at 2300 K, (c) at 2400 K where the 

structure deforms. 

 

 

 

Finally, among the armchair systems simulated, 6-toothed armchair nanogear also 

managed to retain its original form as shown in Figure 44 and its deformation was 

very regular that by inspecting it, one could think that by means of relaxation or 

geometry optimization, a reverse process towards its initial state can be achieved, 

but it has proven that this was not the case. The gear resisted the attempts to return 

it back to its optimized state. 

 

 

 

 
 

Figure 45: C480 (a) Relaxed structure at 1 K, (b) at 1600 K, (c) at 1700 K where the 

structure deforms. 
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The zigzag yielding nanogears used in the simulation had the same kind of 

nanotubes acting as their pivots as their armchair counterparts. The protuberances 

G(8,0) that formed the tooth regions had the same {oi} and {pi} series with those of 

the armchair yielding nanogear protuberances G(4,4) but the different arrangement 

of the pentagons and heptagons resulted in G(8,0) protuberances include more 

atoms (52 atoms for the generating cell) than the G(4,4) (48 atoms for the 

generating cell) thus the zigzag yielding nanogears had more atoms in their system 

compared to equivalent armchair nanogears.  

 

The 3-toothed zigzag yielding nanogear’s evolution snapshots with respect to 

temperature is presented in Figure 46. The system retains its shape but non-

reversible (considering molecular mechanics) bond forming occur. 

 

 

 

 
 

Figure 46: C252 (a) Relaxed structure at 1 K, (b) at 3000 K, (c) at 3100 K where the 

structure deforms. 

 

 

 

In Figure 47, 4-toothed zigzag yielding nanogear is shown. Like its predecessor, 

this nanogear also retains the overall shape but due to new bond forming, fails to 

evolve back to its original form. Also, its deformation temperature is near to that of 

the 3-toothed G(8,0) bases nanogear. 
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Figure 47: C336 (a) Relaxed structure at 1 K, (b) at 3100 K, (c) at 3200 K where the 

structure deforms. 

 

 

 

The 5-toothed, zigzag yielding nanogear also retained its overall shape when it 

deformed at 2900K as shown in Figure 48. The system’s gear locations remained 

stable with respect to the fluctuations. 

 

 

 

 
 

Figure 48: C420 (a) Relaxed structure at 1 K, (b) at 2800 K, (c) at 2900 K where the 

structure deforms. 

 

 

 

The 6-toothed version of the G(8,0) based nanogear, resembling a Mandelbrot 

fractal, collapsed at a premature temperature compared to its predecessors due to 
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deformations in the pivot region. This collapse resulted in the deformation of the 

near site located tooth regions as can be seen in Figure 49. 

 

 

 

 
 

Figure 49: C504 (a) Relaxed structure at 1 K, (b) at 1100 K, (c) at 1200 K where the 

structure deforms. 

 

 

 

In the above simulations, with the exception of the 4-toothed armchair nanogear, all 

the systems preserved their gear formation and the deformations occurred at the 

pivot regions, not at the tooth parts. This information suggests that with relatively 

long enough nanotubes acting as pivots, stability at much higher temperatures can 

be achieved. The curvature arising from the pentagons and heptagons strengthen the 

cage structure by means of stretching and relaxation in opposite directions with 

respect to the force applied. Since the tooth regions last longer than their pivot 

counterparts, these nanogears can safely be implemented into every system 

consisting of nanotubes. 

 

When periodic boundary conditions (PBC) were applied through the azimuthal axis, 

we were expecting the systems to endure higher temperatures because, in the case 

of not applying PBC because the systems’ deformations were occurring mostly at 

the pivot acting nanotube regions but it turned out that this was not the case. While 

armchair yielding carbon nanogears raised their critical temperature threshold by 

about 1000 K, the situation for the zigzag yielding carbon nanogears were very 
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unappealing with the critical temperature threshold lowered by about 1500 K. The 

results for 3, 4 and 5 toothed nanogears with PBC applied are presented in Table 6 

 

 

 

Table 6: The temperature thresholds for nanosystems, with periodic boundary 

conditions applied. 

 

System: Deformation Temperature 

3 toothed armchair nanogear: C240 3600 K 

3 toothed zigzag nanogear: C252 2000 K 

4 toothed armchair nanogear: C320 3700 K 

4 toothed zigzag nanogear: C336 1500 K 

5 toothed armchair nanogear: C400 3300 K 

5 toothed zigzag nanogear: C420 1100 K 

 

 

 

4.1.3 Nanogear Interactions 

 

The prepared nanogears were put to interact with each other. In this model, they 

were “mounted” on two carbon nanotubes acting as pivot. While one of the 

nanogears was unconstrained in every direction and open to interaction, the other 

one was controlled and rotated 1 degree per turn. Enough timesteps were spent for 

the relaxation after each rotation for the freely interacting nanogear to shift itself 

according to the interaction imposed on it by the controlled gear. 

 

The first kind of interaction was chosen to be MM+ force field. The calculation 

consisted of solely the determination of the minimum energy yielding 

conformation. It was seen that, the nanogears responded well in this model as can 

be seen in the selected sequence of the run in Figure 50. 
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Figure 50: Selected sequence of the nanogear interaction simulation using MM+ 

run. 

 

 

 

Since the molecular mechanics simulations are mostly used for deriving information 

about a possible formation of a given system, this simulation was far from having a 

relevance to that of a possible real life system. For this reason, the simulation was 

repeated another time using the Tersoff potential energy function for defining the 

interactions among the atoms and hence the systems. It was seen that due to an 

overlook on the properties of the potential energy function having no storage and 

usage of the bond information, making preference only according to the distance 

and angle, hence acting as a “sticky” potential for the situation which led to a very 

unsuccessful modeling as can be observed in the selected sequence of the run in 

Figure 51. 
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Figure 51: Selected sequence of the nanogear interaction simulation using only 

Tersoff PEF run. 

 

 

 

To overcome this failure, we realized that, as a result of the already formed sp2 

bonds between the atoms of the same molecule, either in nanotubes or nanogears 

would show a very limited affinity towards new atoms because of the saturated state 

in molecular orbitals. Introduction of a new and weak interaction potential such as a 

Lennard-Jones type potential [81] to be used among the atoms of different 

molecules as was the case in Han’s [82] nanogear simulations solved the problem. 

In this final simulation, the intramolecular atoms interacted via Tersoff potential 

while the intermolecular atoms interacted via Lennard-Jones potential. The result 

was successful as depicted in the selected sequence of the run in Figure 52. 
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Figure 52: Selected sequence of the nanogear interaction simulation using Tersoff 

with L-J type PEF run. 

 

 

 

4.2 Electronic Structure Calculations 

 

In the electronic calculations, density of states (DOS), charge densities and the gap 

between the highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) that plays a fundamental role in conductivity were 

investigated for nanotori and nanogears. These properties were obtained by 

performing single-point energy calculations through the Extended-Hückel method 

with unweighted Hückel constant 1.75. The Extended-Hückel method calculates the 

energy eigenvalues for independent delocalized π electrons using an incidence 

matrix in which the diagonal elements are the binding energies of electrons and the 

off-diagonal elements are the interaction energies between two atomic orbitals. The 

particular method employed uses empirical values for the incidence matrix, thus the 

overall calculation is semi-empirical. The calculations for the optimized structures 

obtained from the algorithms derived above, were done using the HyperChem 

software [23].  

 

The calculation results for the nanotori are listed in Table 7 and the nanogears’ 

calculated properties can be found in Table 8. 
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Table 7: Geometrical parameters (R, r) and calculated energies of carbon 

nanotoroidal structures (at 0 K). 

 

Toroid r (Å) R (Å) E (eV) HOMO 

(eV)

LUMO 

(eV) 

ΔE 

(eV)

C170 1.2 9.3 -11699.50 -9.726 -9.592 0.134

C250 1.5 12.6 -17213.16 -9.550 -9.485 0.065

C360 2.0 13.1 -25039.52 -9.786 -9.553 0.233

C520 3.0 12.0 -36339.12 -10.076 -10.038 0.038

C750 3.1 14.6 -52432.73 -10.085 -9.769 0.316

 

 

 

Table 8: Calculated energies of selected carbon nanogears (at 0 K). 

 

Nanogear E (eV) HOMO (eV) LUMO (eV) ΔE (eV)

C240 -16810.50 -10.944 -10.897 0.047

C320 -22426.90 -10.862 -10.855 0.007

C400 -28032.93 -10.972 -10.970 0.002

C480 -33638.69 -10.969 -10.967 0.002

 

 

 

The DOS diagrams for the nanotori and nanogears are plotted in Figure 53 and 

Figure 54, respectively. It should be kept in mind that the electronic structure data 

obtained by the Extended Hückel method must be taken into account with caution. 

These electronic results can not be compared neither with experimental values, nor 

with the ab-initio method results. 
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Figure 53: DOS distributions of the nanotori. Gaussian broadening has been used. 

 

 

 

 
 

Figure 54: DOS distributions of the armchair nanogears. B-Spline method has been 

used. 
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For the systems considered, being nanotori and nanogears, the maximum 

distribution of the Hückel eigenvalues takes place at about -15 eV. Also, as it can be 

seen in the DOS plots, there is a gap located at around 0 eV. This gap tends to 

reduce as the number of atoms in the molecule increases for the nanotori but 

approximately stays the same for nanogears. This gap is also apparent in the work 

of Bai et al. [82] where partial eigenvalue sums for C240, C480 and C960 are 

computed. This gap separates only the positive and negative eigenvalues into two 

groups. Both HOMO and LUMO eigenvalues take place in the same region (among 

the negative energies) of the DOS distribution and located at the bottom of the main 

peak (at about 10 eV). 

 

The magnitude of the peak of the DOS increases as the number of atoms increase, 

as expected, which is an indication of the increasing number of the ‘mobile’ 

electrons. Since the system has closed geometry, the behavior of mobile electrons is 

a point of debate. One point of interest may be the contribution of these mobile 

electrons to the magnetic behaviour [83]. 

 

For the nanotori, the HOMO-LUMO gap values found in the present calculation, 

ranging from 0.04 to 0.032 eV. Hückel calculations [83] on different isomers of 

C240 showed that the HOMO-LUMO gaps range in 0 – 0.5 eV which is in good 

correspondence of the values encountered in our calculations. 

 

The 2D and 3D excess charge density distributions for the nanotori are displayed in 

Figure 55. Charge distribution in the interior region of the larger toroids, C520 and 

C750, is relatively less with respect to the rest of the toroids considered. From 

geometrical point of view, this is observed in the case r >2 Å. Furthermore, 

negative excess charge is localized mainly at the knee regions. 
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Figure 55: 2D and 3D charge distributions of the nanotori considered. 

 

 

 

The 2D and 3D excess charge density distributions for the nanogears can be 

observed in Figure 56 and Figure 57. It can be seen that, for both types of 

nanogears, the charge distribution is mainly localized on the outer shell, acting as a 

screen for the inbound atoms. 
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Figure 56: 2D and 3D charge distributions of the armchair type nanogears 

considered. 

 

 

 

 
 

Figure 57: 2D and 3D charge distributions of the zigzag type nanogears considered. 
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 CHAPTER 5  
 

 

CONCLUSION 

 

 

 

Throughout this thesis it was aimed to describe a structure analysis starting from the 

construction stage, then continuing with optimization and simulation processes. 

Carbon graphitic systems are the most probable structures among the candidates. 

Carbon atoms’ ability to perform various hybridizations and the nanotubes’ 

changing electronic conductance with respect to their geometrical properties as well 

as the graphite’s hydrogen storage ability [84-87] assures that carbon will be the 

building block of the future. 

 

Basing our assumptions on these facts, we have proposed novel carbon structures 

such as carbon nanotori and nanogears in accordance with their possible 

applications. After our investigations, we have seen that, they are endurable to well 

above daily environment temperatures and possess interesting electronic properties 

as is presented in charge density populations.  

 

The industrial advancements are far from complete and at the moment the 

technological methods prevent us from practically manufacturing various systems 

but instead, most of the time we are left with the randomly mixed outcomes from 

mostly uncontrolled processes. Also, the production cost is heavy and this makes 

the decision to be carefully made in which system to produce mandatory. Because 

of this limitations, the candidates for production are first digitally synthesized and 

investigated in simulation and after that, if they have proven to be useful, they are 

passed to the fabrication process.  
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It was aimed in this thesis to be complete in ways that it supplies the intended 

reader with an insight about the tools, the methods and processes it employed. In 

this context, molecular mechanics and molecular dynamics methods have been 

revised before advancing to the thesis’ original subject, being the “Generation of 

Nanostructures of Cage Structures” so that, afterwards when investigating the 

systems constructed by the proposed methods, mechanically and electronically, it 

was hoped that the reader would be given the opportunity to fully comprehend the 

ongoing processes. 

 

Whether the system in question is a simple nano-mechanical (NMS) or a more 

advanced nano-electro-mechanical (NEMS) system, junctions play the crucial role 

of maintaining the relations between the components. For NMS, crude junctions 

like the one proposed in Section 2.1 can be used but NEMS require subtle junctions 

that are formed by means of joining via open-end nanogears. In the two of the 

recent articles by MacKinnon [88] and Schwab et al. [89], the re-coming of a 

mechanics era, this time in quantum mechanics, is strongly emphasized. 

 

We are hoping in the near future to see the mechanical properties of the nanogears 

to come into play. Currently, the alternative fuels and related hydrogen storage is a 

promising subject and many devices are being designed to play part for these 

‘machines’. If we can supply appropriate means of systems that can directly benefit 

from the energy sources considering their nano-scale dimensions, the efficiency can 

be increased dramatically because of the less transportation load. Institues like the 

IMM [90] (Institute for Molecular Manufacturing) already began designing 

nanomotors competing with Drexler’s dreams [15]. 

 

Some of the studies depicted in detail in this thesis has been summarized in article 

formats and has been published. The nanotori construction algorithm and their 

electronic properties are summarized in Ref. [91,92]; their stabilities under heat 

treatment are investigated in Ref. [93]; the junction formation in crossed nanotubes 

under pressure is presented in Ref. [94]; the construction algorithm for 

protuberances is included in Ref. [95]. 
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APPENDIX 

 

Two ad-hoc methods for generating the series 

 

 

 

These two methods are developed from the results of Table 3 and Table 4 and 

successfully generate the series values but caution must be taken if they are to be 

applied for values of (n+m)>26. The first method takes n and o0 values as input 

parameters whereas the second method takes only the n value as input. ‘%’ is the 

remainder operator and ‘ip(x)’ is a function returning the integer part of a rational 

number x. To obtain the series for armchair yielding nanogears, n must be set to 

(n+m) as proposed in Section: 3.3.2.2. The second method is proposed by the 

anonymous refree for the related article [93].  

 

Method 1 

 

if (n % 2 = 1) ok+1 = o0 + 1 

     else ok+1= o0 

 

if (n % 3 = 0) k=(n – 3) / 3 

     else if (n % 3 = 1) k=(n – 1) / 3 

     else k=(n – 5) / 3 

 

k+ = (ok+1- o0+ k +1)/2 and k- = k - k+ + 1 as usual. 
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Method 2 

 

if (n % 6 = 0) o0=ok+1 = (n / 6) + 1 

     else if (n % 6 = 1) o0 = ip(n / 6); ok+1 = o0 + 1 

     else if (n % 6 = 2) o0=ok+1 = ip(n / 6) + 2; 

     else if (n % 6 = 3) o0 = ip(n / 6) + 1; ok+1 = o0 + 1 

     else if (n % 6 = 4) o0=ok+1 = ip(n / 6) + 1; 

     else if (n % 6 = 5) o0 = ip(n / 6) + 1; ok+1 = o0 + 1 

 

k =  (n - o0 - ok+1) / 2 

k+ = (ok+1- o0+ k +1)/2 and k- = k - k+ + 1 as usual. 
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